File size: 2,888 Bytes
1698099
 
 
4c9d28a
 
1698099
 
 
 
4c9d28a
 
 
 
 
 
 
 
 
 
 
1698099
 
 
 
 
 
 
4c9d28a
1698099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-subset
metrics:
- accuracy
model-index:
- name: opt-babylm2-subset-default-20-epochs-1e-3
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: kanishka/babylm2-subset
      type: kanishka/babylm2-subset
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5324464855196746
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opt-babylm2-subset-default-20-epochs-1e-3

This model was trained from scratch on the kanishka/babylm2-subset dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4350
- Accuracy: 0.5324

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 2.5365        | 1.0   | 14169  | 2.7500          | 0.4857   |
| 2.3708        | 2.0   | 28338  | 2.5870          | 0.5032   |
| 2.2572        | 3.0   | 42507  | 2.4839          | 0.5150   |
| 2.1958        | 4.0   | 56676  | 2.4295          | 0.5220   |
| 2.1251        | 5.0   | 70845  | 2.4013          | 0.5259   |
| 2.0769        | 6.0   | 85014  | 2.3830          | 0.5281   |
| 2.043         | 7.0   | 99183  | 2.3736          | 0.5304   |
| 2.007         | 8.0   | 113352 | 2.3671          | 0.5313   |
| 1.9813        | 9.0   | 127521 | 2.3661          | 0.5322   |
| 1.9593        | 10.0  | 141690 | 2.3705          | 0.5325   |
| 1.933         | 11.0  | 155859 | 2.3677          | 0.5331   |
| 1.9106        | 12.0  | 170028 | 2.3727          | 0.5333   |
| 1.8847        | 13.0  | 184197 | 2.3779          | 0.5335   |
| 1.8636        | 14.0  | 198366 | 2.3834          | 0.5335   |
| 1.8391        | 15.0  | 212535 | 2.3955          | 0.5334   |
| 1.8179        | 16.0  | 226704 | 2.4015          | 0.5332   |
| 1.7918        | 17.0  | 240873 | 2.4100          | 0.5331   |
| 1.7674        | 18.0  | 255042 | 2.4159          | 0.5330   |
| 1.751         | 19.0  | 269211 | 2.4263          | 0.5327   |
| 1.7338        | 20.0  | 283380 | 2.4350          | 0.5324   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.19.1