metadata
base_model: SI2M-Lab/DarijaBERT
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
model-index:
- name: results
results: []
results
This model is a fine-tuned version of SI2M-Lab/DarijaBERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5291
- Macro F1: 0.7697
- Accuracy: 0.8007
- Recall: 0.7687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Recall |
---|---|---|---|---|---|---|
0.6848 | 0.9877 | 40 | 0.6040 | 0.6869 | 0.7504 | 0.6821 |
0.5937 | 2.0 | 81 | 0.5376 | 0.7396 | 0.7799 | 0.7286 |
0.4946 | 2.9877 | 121 | 0.5313 | 0.7474 | 0.7816 | 0.7434 |
0.386 | 4.0 | 162 | 0.5291 | 0.7697 | 0.8007 | 0.7687 |
0.3114 | 4.9877 | 202 | 0.5690 | 0.7391 | 0.7782 | 0.7329 |
0.2477 | 6.0 | 243 | 0.5891 | 0.7480 | 0.7834 | 0.7441 |
0.1804 | 6.9877 | 283 | 0.6194 | 0.7422 | 0.7764 | 0.7366 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1