ModernBERT-base-hu / README.md
karsar's picture
Add new SentenceTransformer model
f3655c7 verified
|
raw
history blame
160 kB
metadata
language:
  - hu
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1044013
  - loss:MultipleNegativesRankingLoss
base_model: tasksource/ModernBERT-base-nli
widget:
  - source_sentence: Emberek várnak a lámpánál kerékpárral.
    sentences:
      - Az emberek piros lámpánál haladnak.
      - Az emberek a kerékpárjukon vannak.
      - Egy fekete kutya úszik a vízben egy teniszlabdával a szájában
  - source_sentence: A kutya a vízben van.
    sentences:
      - >-
        Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik
        pedig a tetőn.
      - A macska a vízben van, és dühös.
      - Egy kutya van a vízben, a szájában egy faág.
  - source_sentence: A  feketét visel.
    sentences:
      - Egy barna kutya fröcsköl, ahogy úszik a vízben.
      - Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre.
      - >-
        Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A
        képen:
  - source_sentence: Az emberek alszanak.
    sentences:
      - Három ember beszélget egy városi utcán.
      - A  fehéret visel.
      - Egy apa és a fia ölelgeti alvás közben.
  - source_sentence: Az emberek alszanak.
    sentences:
      - >-
        Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében,
        miközben egy idősebb nő átmegy az utcán.
      - >-
        Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy
        bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép
        jobb oldalán lévő erős elmosódás tesz kivehetetlenné.
      - Egy apa és a fia ölelgeti alvás közben.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: ModernBERT-base
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli dev
          type: all-nli-dev
        metrics:
          - type: cosine_accuracy
            value: 0.7102
            name: Cosine Accuracy
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli test
          type: all-nli-test
        metrics:
          - type: cosine_accuracy
            value: 0.67
            name: Cosine Accuracy

ModernBERT-base

This is a sentence-transformers model finetuned from tasksource/ModernBERT-base-nli on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: tasksource/ModernBERT-base-nli
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • train
  • Language: hu
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("karsar/ModernBERT-base-hu")
# Run inference
sentences = [
    'Az emberek alszanak.',
    'Egy apa és a fia ölelgeti alvás közben.',
    'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric all-nli-dev all-nli-test
cosine_accuracy 0.7102 0.67

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 1,044,013 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 10 tokens
    • mean: 17.57 tokens
    • max: 95 tokens
    • min: 8 tokens
    • mean: 23.15 tokens
    • max: 82 tokens
    • min: 9 tokens
    • mean: 24.71 tokens
    • max: 92 tokens
  • Samples:
    anchor positive negative
    Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. Egy ember a szabadban, lóháton. Egy ember egy étteremben van, és omlettet rendel.
    Gyerekek mosolyogva és integetett a kamera Gyermekek vannak jelen A gyerekek homlokot rántanak
    Egy fiú ugrál a gördeszkát a közepén egy piros híd. A fiú gördeszkás trükköt csinál. A fiú korcsolyázik a járdán.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

train

  • Dataset: train
  • Size: 5,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 10 tokens
    • mean: 17.57 tokens
    • max: 95 tokens
    • min: 8 tokens
    • mean: 23.15 tokens
    • max: 82 tokens
    • min: 9 tokens
    • mean: 24.71 tokens
    • max: 92 tokens
  • Samples:
    anchor positive negative
    Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. Egy ember a szabadban, lóháton. Egy ember egy étteremben van, és omlettet rendel.
    Gyerekek mosolyogva és integetett a kamera Gyermekek vannak jelen A gyerekek homlokot rántanak
    Egy fiú ugrál a gördeszkát a közepén egy piros híd. A fiú gördeszkás trükköt csinál. A fiú korcsolyázik a járdán.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss train loss all-nli-dev_cosine_accuracy all-nli-test_cosine_accuracy
0 0 - - 0.5306 -
0.0008 100 2.818 - - -
0.0015 200 2.5967 - - -
0.0023 300 2.5905 - - -
0.0031 400 2.4971 - - -
0.0038 500 2.5099 - - -
0.0046 600 2.3072 - - -
0.0054 700 1.883 - - -
0.0061 800 1.3657 - - -
0.0069 900 1.5772 - - -
0.0077 1000 1.2804 - - -
0.0084 1100 1.3332 - - -
0.0092 1200 1.0596 - - -
0.0100 1300 0.7385 - - -
0.0107 1400 0.8946 - - -
0.0115 1500 0.7507 - - -
0.0123 1600 0.7161 - - -
0.0130 1700 0.7176 - - -
0.0138 1800 0.8173 - - -
0.0146 1900 0.7464 - - -
0.0153 2000 0.7542 0.9124 0.7244 -
0.0161 2100 0.6147 - - -
0.0169 2200 0.5755 - - -
0.0176 2300 1.0103 - - -
0.0184 2400 0.6152 - - -
0.0192 2500 0.4283 - - -
0.0199 2600 0.5124 - - -
0.0207 2700 0.7056 - - -
0.0215 2800 0.4688 - - -
0.0222 2900 0.5029 - - -
0.0230 3000 0.5196 - - -
0.0238 3100 0.488 - - -
0.0245 3200 0.3601 - - -
0.0253 3300 0.6175 - - -
0.0261 3400 0.7494 - - -
0.0268 3500 0.5092 - - -
0.0276 3600 0.557 - - -
0.0284 3700 0.9289 - - -
0.0291 3800 0.6672 - - -
0.0299 3900 0.6498 - - -
0.0307 4000 0.3891 1.6045 0.6146 -
0.0314 4100 0.3863 - - -
0.0322 4200 0.6232 - - -
0.0329 4300 0.7755 - - -
0.0337 4400 0.4809 - - -
0.0345 4500 0.2968 - - -
0.0352 4600 0.3402 - - -
0.0360 4700 0.4622 - - -
0.0368 4800 0.7333 - - -
0.0375 4900 0.5718 - - -
0.0383 5000 0.7179 - - -
0.0391 5100 0.5597 - - -
0.0398 5200 0.4884 - - -
0.0406 5300 0.3467 - - -
0.0414 5400 0.4234 - - -
0.0421 5500 0.4149 - - -
0.0429 5600 0.4568 - - -
0.0437 5700 0.5416 - - -
0.0444 5800 0.4317 - - -
0.0452 5900 0.5537 - - -
0.0460 6000 0.5437 1.2609 0.6716 -
0.0467 6100 0.526 - - -
0.0475 6200 0.5891 - - -
0.0483 6300 0.5615 - - -
0.0490 6400 0.6012 - - -
0.0498 6500 0.6295 - - -
0.0506 6600 0.7951 - - -
0.0513 6700 0.7898 - - -
0.0521 6800 0.523 - - -
0.0529 6900 0.5871 - - -
0.0536 7000 0.6337 - - -
0.0544 7100 0.7428 - - -
0.0552 7200 0.6299 - - -
0.0559 7300 0.389 - - -
0.0567 7400 0.384 - - -
0.0575 7500 0.7069 - - -
0.0582 7600 0.5387 - - -
0.0590 7700 0.4936 - - -
0.0598 7800 0.579 - - -
0.0605 7900 0.8806 - - -
0.0613 8000 0.7165 1.3063 0.6654 -
0.0621 8100 0.5884 - - -
0.0628 8200 0.7272 - - -
0.0636 8300 0.8061 - - -
0.0644 8400 0.6705 - - -
0.0651 8500 0.79 - - -
0.0659 8600 1.0937 - - -
0.0667 8700 0.7903 - - -
0.0674 8800 0.423 - - -
0.0682 8900 0.8756 - - -
0.0690 9000 0.7461 - - -
0.0697 9100 0.7282 - - -
0.0705 9200 0.7343 - - -
0.0713 9300 0.5109 - - -
0.0720 9400 0.5142 - - -
0.0728 9500 0.6688 - - -
0.0736 9600 0.8799 - - -
0.0743 9700 0.6665 - - -
0.0751 9800 0.6979 - - -
0.0759 9900 0.6971 - - -
0.0766 10000 0.8392 1.5133 0.703 -
0.0774 10100 0.6283 - - -
0.0782 10200 0.6315 - - -
0.0789 10300 0.4937 - - -
0.0797 10400 0.4819 - - -
0.0805 10500 0.5177 - - -
0.0812 10600 0.637 - - -
0.0820 10700 0.584 - - -
0.0828 10800 0.9142 - - -
0.0835 10900 0.6953 - - -
0.0843 11000 0.7623 - - -
0.0851 11100 0.6357 - - -
0.0858 11200 0.7508 - - -
0.0866 11300 0.5425 - - -
0.0874 11400 0.596 - - -
0.0881 11500 0.8407 - - -
0.0889 11600 0.7463 - - -
0.0897 11700 0.9188 - - -
0.0904 11800 0.6921 - - -
0.0912 11900 0.7707 - - -
0.0920 12000 0.7206 1.6151 0.6568 -
0.0927 12100 0.7925 - - -
0.0935 12200 0.8842 - - -
0.0943 12300 0.8328 - - -
0.0950 12400 0.5571 - - -
0.0958 12500 0.9304 - - -
0.0966 12600 0.4566 - - -
0.0973 12700 0.5217 - - -
0.0981 12800 0.4589 - - -
0.0988 12900 0.4216 - - -
0.0996 13000 0.7141 - - -
0.1004 13100 0.6205 - - -
0.1011 13200 0.4045 - - -
0.1019 13300 0.3494 - - -
0.1027 13400 0.4802 - - -
0.1034 13500 0.4482 - - -
0.1042 13600 0.5367 - - -
0.1050 13700 0.3565 - - -
0.1057 13800 0.3069 - - -
0.1065 13900 0.3576 - - -
0.1073 14000 0.4572 0.6264 0.8504 -
0.1080 14100 0.3922 - - -
0.1088 14200 0.289 - - -
0.1096 14300 0.5305 - - -
0.1103 14400 0.5243 - - -
0.1111 14500 0.5738 - - -
0.1119 14600 0.3457 - - -
0.1126 14700 0.3254 - - -
0.1134 14800 0.6328 - - -
0.1142 14900 0.4711 - - -
0.1149 15000 0.2532 - - -
0.1157 15100 0.4379 - - -
0.1165 15200 0.4992 - - -
0.1172 15300 0.3239 - - -
0.1180 15400 0.3294 - - -
0.1188 15500 0.332 - - -
0.1195 15600 0.3025 - - -
0.1203 15700 0.2406 - - -
0.1211 15800 0.4625 - - -
0.1218 15900 0.5237 - - -
0.1226 16000 0.3451 1.2647 0.8454 -
0.1234 16100 0.5763 - - -
0.1241 16200 0.8095 - - -
0.1249 16300 0.5725 - - -
0.1257 16400 0.5191 - - -
0.1264 16500 0.3933 - - -
0.1272 16600 0.3892 - - -
0.1280 16700 0.5239 - - -
0.1287 16800 0.6505 - - -
0.1295 16900 0.3977 - - -
0.1303 17000 0.2333 - - -
0.1310 17100 0.3542 - - -
0.1318 17200 0.3516 - - -
0.1326 17300 0.5825 - - -
0.1333 17400 0.4237 - - -
0.1341 17500 0.5338 - - -
0.1349 17600 0.3754 - - -
0.1356 17700 0.4027 - - -
0.1364 17800 0.3067 - - -
0.1372 17900 0.4103 - - -
0.1379 18000 0.3567 1.5228 0.7474 -
0.1387 18100 0.356 - - -
0.1395 18200 0.6599 - - -
0.1402 18300 0.4607 - - -
0.1410 18400 0.5707 - - -
0.1418 18500 0.506 - - -
0.1425 18600 0.553 - - -
0.1433 18700 0.4427 - - -
0.1441 18800 0.4758 - - -
0.1448 18900 0.4573 - - -
0.1456 19000 0.5183 - - -
0.1464 19100 0.7152 - - -
0.1471 19200 0.6519 - - -
0.1479 19300 0.4398 - - -
0.1487 19400 0.6364 - - -
0.1494 19500 0.5541 - - -
0.1502 19600 0.5911 - - -
0.1510 19700 0.4827 - - -
0.1517 19800 0.3507 - - -
0.1525 19900 0.4048 - - -
0.1533 20000 0.5348 1.1738 0.7378 -
0.1540 20100 0.5465 - - -
0.1548 20200 0.4924 - - -
0.1556 20300 0.5436 - - -
0.1563 20400 0.7259 - - -
0.1571 20500 0.5202 - - -
0.1579 20600 0.5634 - - -
0.1586 20700 0.6697 - - -
0.1594 20800 0.7563 - - -
0.1602 20900 0.6669 - - -
0.1609 21000 0.8264 - - -
0.1617 21100 0.948 - - -
0.1624 21200 0.7443 - - -
0.1632 21300 0.3897 - - -
0.1640 21400 0.7757 - - -
0.1647 21500 0.7034 - - -
0.1655 21600 0.7031 - - -
0.1663 21700 0.6138 - - -
0.1670 21800 0.5235 - - -
0.1678 21900 0.5078 - - -
0.1686 22000 0.7041 1.3245 0.7018 -
0.1693 22100 0.8529 - - -
0.1701 22200 0.5939 - - -
0.1709 22300 0.642 - - -
0.1716 22400 0.5834 - - -
0.1724 22500 0.7157 - - -
0.1732 22600 0.5561 - - -
0.1739 22700 0.5861 - - -
0.1747 22800 0.4327 - - -
0.1755 22900 0.409 - - -
0.1762 23000 0.462 - - -
0.1770 23100 0.581 - - -
0.1778 23200 0.5704 - - -
0.1785 23300 0.8111 - - -
0.1793 23400 0.6905 - - -
0.1801 23500 0.6811 - - -
0.1808 23600 0.6078 - - -
0.1816 23700 0.6502 - - -
0.1824 23800 0.5575 - - -
0.1831 23900 0.5162 - - -
0.1839 24000 0.7487 1.5347 0.7036 -
0.1847 24100 0.7011 - - -
0.1854 24200 0.7417 - - -
0.1862 24300 0.6514 - - -
0.1870 24400 0.738 - - -
0.1877 24500 0.7296 - - -
0.1885 24600 0.6939 - - -
0.1893 24700 0.8072 - - -
0.1900 24800 0.7847 - - -
0.1908 24900 0.5243 - - -
0.1916 25000 0.8317 - - -
0.1923 25100 0.3981 - - -
0.1931 25200 0.4715 - - -
0.1939 25300 0.3734 - - -
0.1946 25400 0.43 - - -
0.1954 25500 0.6921 - - -
0.1962 25600 0.724 - - -
0.1969 25700 0.4203 - - -
0.1977 25800 0.3013 - - -
0.1985 25900 0.5666 - - -
0.1992 26000 0.454 0.5471 0.9028 -
0.2000 26100 0.4989 - - -
0.2008 26200 0.4614 - - -
0.2015 26300 0.2856 - - -
0.2023 26400 0.458 - - -
0.2031 26500 0.5247 - - -
0.2038 26600 0.4425 - - -
0.2046 26700 0.4603 - - -
0.2054 26800 0.6186 - - -
0.2061 26900 0.6571 - - -
0.2069 27000 0.6305 - - -
0.2077 27100 0.5351 - - -
0.2084 27200 0.3616 - - -
0.2092 27300 0.7269 - - -
0.2100 27400 0.4669 - - -
0.2107 27500 0.3201 - - -
0.2115 27600 0.4897 - - -
0.2123 27700 0.4902 - - -
0.2130 27800 0.3957 - - -
0.2138 27900 0.418 - - -
0.2146 28000 0.294 1.1809 0.8098 -
0.2153 28100 0.3014 - - -
0.2161 28200 0.2607 - - -
0.2169 28300 0.5948 - - -
0.2176 28400 0.5235 - - -
0.2184 28500 0.2864 - - -
0.2192 28600 0.4785 - - -
0.2199 28700 0.6624 - - -
0.2207 28800 0.4939 - - -
0.2215 28900 0.5468 - - -
0.2222 29000 0.2632 - - -
0.2230 29100 0.2601 - - -
0.2238 29200 0.4946 - - -
0.2245 29300 0.5398 - - -
0.2253 29400 0.3971 - - -
0.2261 29500 0.2474 - - -
0.2268 29600 0.2803 - - -
0.2276 29700 0.3461 - - -
0.2283 29800 0.569 - - -
0.2291 29900 0.3645 - - -
0.2299 30000 0.4675 0.7793 0.82 -
0.2306 30100 0.3114 - - -
0.2314 30200 0.2872 - - -
0.2322 30300 0.2524 - - -
0.2329 30400 0.3419 - - -
0.2337 30500 0.3456 - - -
0.2345 30600 0.2813 - - -
0.2352 30700 0.6423 - - -
0.2360 30800 0.5166 - - -
0.2368 30900 0.6356 - - -
0.2375 31000 0.6066 - - -
0.2383 31100 0.3955 - - -
0.2391 31200 0.4736 - - -
0.2398 31300 0.468 - - -
0.2406 31400 0.4473 - - -
0.2414 31500 0.5372 - - -
0.2421 31600 0.6317 - - -
0.2429 31700 0.6729 - - -
0.2437 31800 0.4201 - - -
0.2444 31900 0.5762 - - -
0.2452 32000 0.465 1.2451 0.711 -
0.2460 32100 0.5183 - - -
0.2467 32200 0.5787 - - -
0.2475 32300 0.2941 - - -
0.2483 32400 0.3294 - - -
0.2490 32500 0.5425 - - -
0.2498 32600 0.4231 - - -
0.2506 32700 0.4012 - - -
0.2513 32800 0.5048 - - -
0.2521 32900 0.7835 - - -
0.2529 33000 0.4841 - - -
0.2536 33100 0.5165 - - -
0.2544 33200 0.616 - - -
0.2552 33300 0.7964 - - -
0.2559 33400 0.6555 - - -
0.2567 33500 0.8277 - - -
0.2575 33600 0.968 - - -
0.2582 33700 0.7169 - - -
0.2590 33800 0.4022 - - -
0.2598 33900 0.7319 - - -
0.2605 34000 0.6992 1.1376 0.7298 -
0.2613 34100 0.6158 - - -
0.2621 34200 0.5864 - - -
0.2628 34300 0.4992 - - -
0.2636 34400 0.4612 - - -
0.2644 34500 0.6673 - - -
0.2651 34600 0.7744 - - -
0.2659 34700 0.5635 - - -
0.2667 34800 0.5776 - - -
0.2674 34900 0.5226 - - -
0.2682 35000 0.7188 - - -
0.2690 35100 0.5005 - - -
0.2697 35200 0.5778 - - -
0.2705 35300 0.4347 - - -
0.2713 35400 0.4557 - - -
0.2720 35500 0.4636 - - -
0.2728 35600 0.503 - - -
0.2736 35700 0.496 - - -
0.2743 35800 0.7014 - - -
0.2751 35900 0.6399 - - -
0.2759 36000 0.5515 1.0167 0.7976 -
0.2766 36100 0.5554 - - -
0.2774 36200 0.6826 - - -
0.2782 36300 0.588 - - -
0.2789 36400 0.5108 - - -
0.2797 36500 0.7009 - - -
0.2805 36600 0.5777 - - -
0.2812 36700 0.68 - - -
0.2820 36800 0.5866 - - -
0.2828 36900 0.6809 - - -
0.2835 37000 0.6074 - - -
0.2843 37100 0.5996 - - -
0.2851 37200 0.7923 - - -
0.2858 37300 0.7223 - - -
0.2866 37400 0.4707 - - -
0.2874 37500 0.8465 - - -
0.2881 37600 0.4312 - - -
0.2889 37700 0.4312 - - -
0.2897 37800 0.4297 - - -
0.2904 37900 0.3338 - - -
0.2912 38000 0.7997 0.8492 0.859 -
0.2919 38100 0.7267 - - -
0.2927 38200 0.453 - - -
0.2935 38300 0.3056 - - -
0.2942 38400 0.5767 - - -
0.2950 38500 0.4489 - - -
0.2958 38600 0.4936 - - -
0.2965 38700 0.4155 - - -
0.2973 38800 0.2844 - - -
0.2981 38900 0.3929 - - -
0.2988 39000 0.4238 - - -
0.2996 39100 0.4135 - - -
0.3004 39200 0.2814 - - -
0.3011 39300 0.6305 - - -
0.3019 39400 0.5786 - - -
0.3027 39500 0.6518 - - -
0.3034 39600 0.3739 - - -
0.3042 39700 0.2734 - - -
0.3050 39800 0.7305 - - -
0.3057 39900 0.46 - - -
0.3065 40000 0.3369 0.8074 0.8386 -
0.3073 40100 0.3867 - - -
0.3080 40200 0.5064 - - -
0.3088 40300 0.2786 - - -
0.3096 40400 0.2565 - - -
0.3103 40500 0.2664 - - -
0.3111 40600 0.2573 - - -
0.3119 40700 0.2323 - - -
0.3126 40800 0.4503 - - -
0.3134 40900 0.4634 - - -
0.3142 41000 0.2864 - - -
0.3149 41100 0.4351 - - -
0.3157 41200 0.6829 - - -
0.3165 41300 0.4354 - - -
0.3172 41400 0.4817 - - -
0.3180 41500 0.2635 - - -
0.3188 41600 0.3183 - - -
0.3195 41700 0.4315 - - -
0.3203 41800 0.6398 - - -
0.3211 41900 0.3831 - - -
0.3218 42000 0.195 0.9463 0.774 -
0.3226 42100 0.2588 - - -
0.3234 42200 0.3148 - - -
0.3241 42300 0.5142 - - -
0.3249 42400 0.3584 - - -
0.3257 42500 0.3459 - - -
0.3264 42600 0.2535 - - -
0.3272 42700 0.3347 - - -
0.3280 42800 0.2351 - - -
0.3287 42900 0.4061 - - -
0.3295 43000 0.3064 - - -
0.3303 43100 0.3565 - - -
0.3310 43200 0.6056 - - -
0.3318 43300 0.4197 - - -
0.3326 43400 0.5453 - - -
0.3333 43500 0.5166 - - -
0.3341 43600 0.3983 - - -
0.3349 43700 0.462 - - -
0.3356 43800 0.4676 - - -
0.3364 43900 0.4021 - - -
0.3372 44000 0.5591 0.8470 0.799 -
0.3379 44100 0.588 - - -
0.3387 44200 0.6152 - - -
0.3395 44300 0.3542 - - -
0.3402 44400 0.5048 - - -
0.3410 44500 0.4672 - - -
0.3418 44600 0.519 - - -
0.3425 44700 0.4492 - - -
0.3433 44800 0.2612 - - -
0.3441 44900 0.3205 - - -
0.3448 45000 0.4904 - - -
0.3456 45100 0.3813 - - -
0.3464 45200 0.4119 - - -
0.3471 45300 0.4968 - - -
0.3479 45400 0.5634 - - -
0.3487 45500 0.4638 - - -
0.3494 45600 0.4271 - - -
0.3502 45700 0.61 - - -
0.3510 45800 0.782 - - -
0.3517 45900 0.6051 - - -
0.3525 46000 0.8175 0.7792 0.7852 -
0.3533 46100 0.942 - - -
0.3540 46200 0.6811 - - -
0.3548 46300 0.376 - - -
0.3556 46400 0.704 - - -
0.3563 46500 0.6783 - - -
0.3571 46600 0.5986 - - -
0.3578 46700 0.5548 - - -
0.3586 46800 0.4983 - - -
0.3594 46900 0.402 - - -
0.3601 47000 0.6978 - - -
0.3609 47100 0.7503 - - -
0.3617 47200 0.5298 - - -
0.3624 47300 0.6138 - - -
0.3632 47400 0.5539 - - -
0.3640 47500 0.591 - - -
0.3647 47600 0.4999 - - -
0.3655 47700 0.4934 - - -
0.3663 47800 0.4399 - - -
0.3670 47900 0.4822 - - -
0.3678 48000 0.4384 1.0635 0.7896 -
0.3686 48100 0.5239 - - -
0.3693 48200 0.503 - - -
0.3701 48300 0.6655 - - -
0.3709 48400 0.6247 - - -
0.3716 48500 0.6036 - - -
0.3724 48600 0.524 - - -
0.3732 48700 0.6682 - - -
0.3739 48800 0.5122 - - -
0.3747 48900 0.4451 - - -
0.3755 49000 0.7625 - - -
0.3762 49100 0.6206 - - -
0.3770 49200 0.701 - - -
0.3778 49300 0.6259 - - -
0.3785 49400 0.6891 - - -
0.3793 49500 0.5746 - - -
0.3801 49600 0.7717 - - -
0.3808 49700 0.7877 - - -
0.3816 49800 0.7302 - - -
0.3824 49900 0.5473 - - -
0.3831 50000 0.7718 0.7419 0.8194 -
0.3839 50100 0.5886 - - -
0.3847 50200 0.4268 - - -
0.3854 50300 0.411 - - -
0.3862 50400 0.4831 - - -
0.3870 50500 0.5904 - - -
0.3877 50600 0.7364 - - -
0.3885 50700 0.4386 - - -
0.3893 50800 0.3428 - - -
0.3900 50900 0.5774 - - -
0.3908 51000 0.4221 - - -
0.3916 51100 0.4026 - - -
0.3923 51200 0.3776 - - -
0.3931 51300 0.203 - - -
0.3939 51400 0.5251 - - -
0.3946 51500 0.4351 - - -
0.3954 51600 0.353 - - -
0.3962 51700 0.2841 - - -
0.3969 51800 0.5105 - - -
0.3977 51900 0.4854 - - -
0.3985 52000 0.5926 0.4281 0.9072 -
0.3992 52100 0.4137 - - -
0.4000 52200 0.2775 - - -
0.4008 52300 0.7688 - - -
0.4015 52400 0.4428 - - -
0.4023 52500 0.289 - - -
0.4031 52600 0.414 - - -
0.4038 52700 0.3626 - - -
0.4046 52800 0.2762 - - -
0.4054 52900 0.3207 - - -
0.4061 53000 0.2421 - - -
0.4069 53100 0.2585 - - -
0.4077 53200 0.2573 - - -
0.4084 53300 0.439 - - -
0.4092 53400 0.4406 - - -
0.4100 53500 0.2119 - - -
0.4107 53600 0.3343 - - -
0.4115 53700 0.6587 - - -
0.4123 53800 0.4071 - - -
0.4130 53900 0.5403 - - -
0.4138 54000 0.2426 0.5609 0.8958 -
0.4146 54100 0.241 - - -
0.4153 54200 0.3912 - - -
0.4161 54300 0.5871 - - -
0.4169 54400 0.358 - - -
0.4176 54500 0.1675 - - -
0.4184 54600 0.2417 - - -
0.4192 54700 0.3239 - - -
0.4199 54800 0.3485 - - -
0.4207 54900 0.4117 - - -
0.4214 55000 0.5028 - - -
0.4222 55100 0.265 - - -
0.4230 55200 0.3147 - - -
0.4237 55300 0.2105 - - -
0.4245 55400 0.3083 - - -
0.4253 55500 0.2695 - - -
0.4260 55600 0.3412 - - -
0.4268 55700 0.6009 - - -
0.4276 55800 0.4202 - - -
0.4283 55900 0.5336 - - -
0.4291 56000 0.4002 0.8252 0.8624 -
0.4299 56100 0.4216 - - -
0.4306 56200 0.3402 - - -
0.4314 56300 0.4168 - - -
0.4322 56400 0.4411 - - -
0.4329 56500 0.5359 - - -
0.4337 56600 0.5151 - - -
0.4345 56700 0.6349 - - -
0.4352 56800 1.5813 - - -
0.4360 56900 1.6637 - - -
0.4368 57000 1.7604 - - -
0.4375 57100 2.0211 - - -
0.4383 57200 1.9293 - - -
0.4391 57300 1.9076 - - -
0.4398 57400 1.9143 - - -
0.4406 57500 1.7937 - - -
0.4414 57600 1.8207 - - -
0.4421 57700 1.813 - - -
0.4429 57800 1.7214 - - -
0.4437 57900 1.7229 - - -
0.4444 58000 1.6582 0.8077 0.7914 -
0.4452 58100 1.6518 - - -
0.4460 58200 1.6449 - - -
0.4467 58300 1.568 - - -
0.4475 58400 1.5673 - - -
0.4483 58500 1.5651 - - -
0.4490 58600 1.5778 - - -
0.4498 58700 1.5195 - - -
0.4506 58800 1.4874 - - -
0.4513 58900 1.4405 - - -
0.4521 59000 1.4545 - - -
0.4529 59100 1.5086 - - -
0.4536 59200 1.4828 - - -
0.4544 59300 1.4325 - - -
0.4552 59400 1.4079 - - -
0.4559 59500 1.4081 - - -
0.4567 59600 1.3905 - - -
0.4575 59700 1.4186 - - -
0.4582 59800 1.41 - - -
0.4590 59900 1.4407 - - -
0.4598 60000 1.3896 0.7229 0.8242 -
0.4605 60100 1.3876 - - -
0.4613 60200 1.3545 - - -
0.4621 60300 1.3546 - - -
0.4628 60400 1.3438 - - -
0.4636 60500 1.3356 - - -
0.4644 60600 1.3805 - - -
0.4651 60700 1.4346 - - -
0.4659 60800 1.521 - - -
0.4667 60900 1.6184 - - -
0.4674 61000 1.5194 - - -
0.4682 61100 1.5911 - - -
0.4690 61200 1.5137 - - -
0.4697 61300 1.5644 - - -
0.4705 61400 1.5005 - - -
0.4713 61500 1.5356 - - -
0.4720 61600 1.4965 - - -
0.4728 61700 1.4623 - - -
0.4736 61800 1.4455 - - -
0.4743 61900 1.4451 - - -
0.4751 62000 1.4847 0.7731 0.8068 -
0.4759 62100 1.5076 - - -
0.4766 62200 1.4562 - - -
0.4774 62300 1.4864 - - -
0.4782 62400 1.4849 - - -
0.4789 62500 1.4504 - - -
0.4797 62600 1.4445 - - -
0.4805 62700 1.4533 - - -
0.4812 62800 1.3457 - - -
0.4820 62900 1.4672 - - -
0.4828 63000 1.3975 - - -
0.4835 63100 1.4895 - - -
0.4843 63200 1.3786 - - -
0.4851 63300 1.4722 - - -
0.4858 63400 1.4289 - - -
0.4866 63500 1.4191 - - -
0.4873 63600 1.4131 - - -
0.4881 63700 1.4592 - - -
0.4889 63800 1.4045 - - -
0.4896 63900 1.4086 - - -
0.4904 64000 1.3957 0.9342 0.7664 -
0.4912 64100 1.4041 - - -
0.4919 64200 1.3465 - - -
0.4927 64300 1.3846 - - -
0.4935 64400 1.4103 - - -
0.4942 64500 1.453 - - -
0.4950 64600 1.3668 - - -
0.4958 64700 1.426 - - -
0.4965 64800 1.4182 - - -
0.4973 64900 1.4032 - - -
0.4981 65000 1.3454 - - -
0.4988 65100 1.3173 - - -
0.4996 65200 1.3348 - - -
0.5004 65300 1.3542 - - -
0.5011 65400 1.3372 - - -
0.5019 65500 1.2873 - - -
0.5027 65600 1.3441 - - -
0.5034 65700 1.3465 - - -
0.5042 65800 1.3539 - - -
0.5050 65900 1.2753 - - -
0.5057 66000 1.349 1.0317 0.7534 -
0.5065 66100 1.3076 - - -
0.5073 66200 1.3808 - - -
0.5080 66300 1.3185 - - -
0.5088 66400 1.334 - - -
0.5096 66500 1.35 - - -
0.5103 66600 1.3469 - - -
0.5111 66700 1.3219 - - -
0.5119 66800 1.2597 - - -
0.5126 66900 1.3477 - - -
0.5134 67000 1.3463 - - -
0.5142 67100 1.2914 - - -
0.5149 67200 1.3025 - - -
0.5157 67300 1.2898 - - -
0.5165 67400 1.316 - - -
0.5172 67500 1.3588 - - -
0.5180 67600 1.3554 - - -
0.5188 67700 1.2989 - - -
0.5195 67800 1.3239 - - -
0.5203 67900 1.3008 - - -
0.5211 68000 1.325 1.0629 0.7204 -
0.5218 68100 1.3205 - - -
0.5226 68200 1.2946 - - -
0.5234 68300 1.3071 - - -
0.5241 68400 1.3348 - - -
0.5249 68500 1.3374 - - -
0.5257 68600 1.323 - - -
0.5264 68700 1.2934 - - -
0.5272 68800 1.3721 - - -
0.5280 68900 1.2767 - - -
0.5287 69000 1.2603 - - -
0.5295 69100 1.2686 - - -
0.5303 69200 1.2532 - - -
0.5310 69300 1.2824 - - -
0.5318 69400 1.2738 - - -
0.5326 69500 1.3338 - - -
0.5333 69600 1.2718 - - -
0.5341 69700 1.3239 - - -
0.5349 69800 1.2581 - - -
0.5356 69900 1.2255 - - -
0.5364 70000 1.3209 0.9075 0.7632 -
0.5372 70100 1.2825 - - -
0.5379 70200 1.2475 - - -
0.5387 70300 1.2232 - - -
0.5395 70400 1.267 - - -
0.5402 70500 1.2777 - - -
0.5410 70600 1.2831 - - -
0.5418 70700 1.2507 - - -
0.5425 70800 1.2428 - - -
0.5433 70900 1.2765 - - -
0.5441 71000 1.2613 - - -
0.5448 71100 1.2286 - - -
0.5456 71200 1.2344 - - -
0.5464 71300 1.2684 - - -
0.5471 71400 1.233 - - -
0.5479 71500 1.2488 - - -
0.5487 71600 1.2544 - - -
0.5494 71700 1.3167 - - -
0.5502 71800 1.256 - - -
0.5509 71900 1.3045 - - -
0.5517 72000 1.2699 0.9015 0.7592 -
0.5525 72100 1.2664 - - -
0.5532 72200 1.24 - - -
0.5540 72300 1.2285 - - -
0.5548 72400 1.2797 - - -
0.5555 72500 1.1958 - - -
0.5563 72600 1.2537 - - -
0.5571 72700 1.255 - - -
0.5578 72800 1.2302 - - -
0.5586 72900 1.2105 - - -
0.5594 73000 1.2941 - - -
0.5601 73100 1.2283 - - -
0.5609 73200 1.2497 - - -
0.5617 73300 1.2425 - - -
0.5624 73400 1.1892 - - -
0.5632 73500 1.1626 - - -
0.5640 73600 1.2128 - - -
0.5647 73700 1.1867 - - -
0.5655 73800 1.1584 - - -
0.5663 73900 1.2393 - - -
0.5670 74000 1.2418 0.9238 0.7524 -
0.5678 74100 1.1947 - - -
0.5686 74200 1.1706 - - -
0.5693 74300 1.2323 - - -
0.5701 74400 1.1935 - - -
0.5709 74500 1.1717 - - -
0.5716 74600 1.1926 - - -
0.5724 74700 1.1835 - - -
0.5732 74800 1.1998 - - -
0.5739 74900 1.1909 - - -
0.5747 75000 1.2149 - - -
0.5755 75100 1.2231 - - -
0.5762 75200 1.1709 - - -
0.5770 75300 1.2359 - - -
0.5778 75400 1.2179 - - -
0.5785 75500 1.2352 - - -
0.5793 75600 1.2049 - - -
0.5801 75700 1.2066 - - -
0.5808 75800 1.1898 - - -
0.5816 75900 1.1925 - - -
0.5824 76000 1.2601 1.0085 0.7544 -
0.5831 76100 1.1366 - - -
0.5839 76200 1.2151 - - -
0.5847 76300 1.2266 - - -
0.5854 76400 1.1512 - - -
0.5862 76500 1.1519 - - -
0.5870 76600 1.1471 - - -
0.5877 76700 1.1844 - - -
0.5885 76800 1.2006 - - -
0.5893 76900 1.2498 - - -
0.5900 77000 1.2298 - - -
0.5908 77100 1.1835 - - -
0.5916 77200 1.1874 - - -
0.5923 77300 1.2055 - - -
0.5931 77400 1.199 - - -
0.5939 77500 1.1363 - - -
0.5946 77600 1.1442 - - -
0.5954 77700 1.204 - - -
0.5962 77800 1.1489 - - -
0.5969 77900 1.1989 - - -
0.5977 78000 1.1938 0.9296 0.7794 -
0.5985 78100 1.2019 - - -
0.5992 78200 1.1795 - - -
0.6000 78300 1.1761 - - -
0.6008 78400 1.1299 - - -
0.6015 78500 1.1738 - - -
0.6023 78600 1.2198 - - -
0.6031 78700 1.1572 - - -
0.6038 78800 1.167 - - -
0.6046 78900 1.1832 - - -
0.6054 79000 1.1631 - - -
0.6061 79100 1.1197 - - -
0.6069 79200 1.1409 - - -
0.6077 79300 1.1452 - - -
0.6084 79400 1.1731 - - -
0.6092 79500 1.152 - - -
0.6100 79600 1.2185 - - -
0.6107 79700 1.1443 - - -
0.6115 79800 1.1746 - - -
0.6123 79900 1.1176 - - -
0.6130 80000 1.1944 1.1048 0.7202 -
0.6138 80100 1.1751 - - -
0.6145 80200 1.2293 - - -
0.6153 80300 1.1731 - - -
0.6161 80400 1.1711 - - -
0.6168 80500 1.1819 - - -
0.6176 80600 1.1692 - - -
0.6184 80700 1.1536 - - -
0.6191 80800 1.1936 - - -
0.6199 80900 1.1829 - - -
0.6207 81000 1.1719 - - -
0.6214 81100 1.2001 - - -
0.6222 81200 1.1501 - - -
0.6230 81300 1.1463 - - -
0.6237 81400 1.1487 - - -
0.6245 81500 1.1625 - - -
0.6253 81600 1.1482 - - -
0.6260 81700 1.147 - - -
0.6268 81800 1.1497 - - -
0.6276 81900 1.1446 - - -
0.6283 82000 1.1701 1.1050 0.7162 -
0.6291 82100 1.0952 - - -
0.6299 82200 1.1361 - - -
0.6306 82300 1.1584 - - -
0.6314 82400 1.1553 - - -
0.6322 82500 1.1621 - - -
0.6329 82600 1.1685 - - -
0.6337 82700 1.1698 - - -
0.6345 82800 1.1936 - - -
0.6352 82900 1.1631 - - -
0.6360 83000 1.1443 - - -
0.6368 83100 1.1511 - - -
0.6375 83200 1.1565 - - -
0.6383 83300 1.1384 - - -
0.6391 83400 1.1279 - - -
0.6398 83500 1.1306 - - -
0.6406 83600 1.1461 - - -
0.6414 83700 1.1621 - - -
0.6421 83800 1.1153 - - -
0.6429 83900 1.0626 - - -
0.6437 84000 1.1729 1.0598 0.724 -
0.6444 84100 1.1122 - - -
0.6452 84200 1.0985 - - -
0.6460 84300 1.1135 - - -
0.6467 84400 1.1886 - - -
0.6475 84500 1.1443 - - -
0.6483 84600 1.1627 - - -
0.6490 84700 1.088 - - -
0.6498 84800 1.1294 - - -
0.6506 84900 1.1251 - - -
0.6513 85000 1.1218 - - -
0.6521 85100 1.1628 - - -
0.6529 85200 1.1177 - - -
0.6536 85300 1.1522 - - -
0.6544 85400 1.1203 - - -
0.6552 85500 1.06 - - -
0.6559 85600 1.1197 - - -
0.6567 85700 1.109 - - -
0.6575 85800 1.0544 - - -
0.6582 85900 1.0987 - - -
0.6590 86000 1.0792 1.1465 0.7206 -
0.6598 86100 1.1276 - - -
0.6605 86200 1.099 - - -
0.6613 86300 1.1688 - - -
0.6621 86400 1.0562 - - -
0.6628 86500 1.0725 - - -
0.6636 86600 1.1031 - - -
0.6644 86700 1.0967 - - -
0.6651 86800 1.063 - - -
0.6659 86900 1.0409 - - -
0.6667 87000 1.1811 - - -
0.6674 87100 1.1475 - - -
0.6682 87200 1.0248 - - -
0.6690 87300 1.0646 - - -
0.6697 87400 1.0778 - - -
0.6705 87500 1.0745 - - -
0.6713 87600 1.0975 - - -
0.6720 87700 1.0581 - - -
0.6728 87800 1.0377 - - -
0.6736 87900 1.1017 - - -
0.6743 88000 1.0689 1.1524 0.7198 -
0.6751 88100 1.1284 - - -
0.6759 88200 1.0736 - - -
0.6766 88300 1.0742 - - -
0.6774 88400 1.1067 - - -
0.6782 88500 1.0623 - - -
0.6789 88600 1.0904 - - -
0.6797 88700 1.0958 - - -
0.6804 88800 1.0329 - - -
0.6812 88900 1.0613 - - -
0.6820 89000 1.0771 - - -
0.6827 89100 1.0558 - - -
0.6835 89200 1.0439 - - -
0.6843 89300 1.049 - - -
0.6850 89400 1.0905 - - -
0.6858 89500 1.0629 - - -
0.6866 89600 1.0661 - - -
0.6873 89700 1.1135 - - -
0.6881 89800 1.0671 - - -
0.6889 89900 1.0554 - - -
0.6896 90000 1.0414 0.9706 0.7508 -
0.6904 90100 1.028 - - -
0.6912 90200 1.0442 - - -
0.6919 90300 1.0573 - - -
0.6927 90400 1.0233 - - -
0.6935 90500 1.0326 - - -
0.6942 90600 1.0188 - - -
0.6950 90700 1.0358 - - -
0.6958 90800 1.0623 - - -
0.6965 90900 0.9863 - - -
0.6973 91000 1.0535 - - -
0.6981 91100 1.0135 - - -
0.6988 91200 1.1006 - - -
0.6996 91300 1.0666 - - -
0.7004 91400 0.9967 - - -
0.7011 91500 1.0445 - - -
0.7019 91600 1.0351 - - -
0.7027 91700 1.0524 - - -
0.7034 91800 1.0272 - - -
0.7042 91900 1.0171 - - -
0.7050 92000 1.0912 1.1023 0.725 -
0.7057 92100 1.0064 - - -
0.7065 92200 1.0634 - - -
0.7073 92300 1.0212 - - -
0.7080 92400 1.0396 - - -
0.7088 92500 1.0301 - - -
0.7096 92600 1.0441 - - -
0.7103 92700 1.0298 - - -
0.7111 92800 1.0597 - - -
0.7119 92900 1.0236 - - -
0.7126 93000 1.0165 - - -
0.7134 93100 1.0502 - - -
0.7142 93200 1.0019 - - -
0.7149 93300 1.024 - - -
0.7157 93400 1.0316 - - -
0.7165 93500 1.019 - - -
0.7172 93600 1.0441 - - -
0.7180 93700 0.9956 - - -
0.7188 93800 1.0471 - - -
0.7195 93900 1.0043 - - -
0.7203 94000 0.988 1.2226 0.7072 -
0.7211 94100 1.0491 - - -
0.7218 94200 0.9958 - - -
0.7226 94300 1.0438 - - -
0.7234 94400 1.0214 - - -
0.7241 94500 1.0251 - - -
0.7249 94600 0.9478 - - -
0.7257 94700 1.0485 - - -
0.7264 94800 0.9732 - - -
0.7272 94900 0.9509 - - -
0.7280 95000 1.0087 - - -
0.7287 95100 1.0122 - - -
0.7295 95200 1.0374 - - -
0.7303 95300 0.9906 - - -
0.7310 95400 1.0056 - - -
0.7318 95500 1.0247 - - -
0.7326 95600 1.0125 - - -
0.7333 95700 0.9832 - - -
0.7341 95800 0.9603 - - -
0.7349 95900 1.0088 - - -
0.7356 96000 0.994 1.1378 0.7204 -
0.7364 96100 0.9937 - - -
0.7372 96200 1.0542 - - -
0.7379 96300 0.9718 - - -
0.7387 96400 0.9873 - - -
0.7395 96500 1.0182 - - -
0.7402 96600 1.0015 - - -
0.7410 96700 1.0489 - - -
0.7418 96800 1.0042 - - -
0.7425 96900 1.0933 - - -
0.7433 97000 0.9977 - - -
0.7440 97100 0.9944 - - -
0.7448 97200 1.039 - - -
0.7456 97300 0.9722 - - -
0.7463 97400 1.0472 - - -
0.7471 97500 0.9454 - - -
0.7479 97600 0.9808 - - -
0.7486 97700 0.9875 - - -
0.7494 97800 1.0396 - - -
0.7502 97900 0.9982 - - -
0.7509 98000 0.968 1.1959 0.6948 -
0.7517 98100 1.0557 - - -
0.7525 98200 0.9831 - - -
0.7532 98300 0.9735 - - -
0.7540 98400 1.0383 - - -
0.7548 98500 0.9509 - - -
0.7555 98600 0.9619 - - -
0.7563 98700 0.9943 - - -
0.7571 98800 0.961 - - -
0.7578 98900 0.9769 - - -
0.7586 99000 1.0056 - - -
0.7594 99100 1.0257 - - -
0.7601 99200 0.9277 - - -
0.7609 99300 0.947 - - -
0.7617 99400 0.9904 - - -
0.7624 99500 0.955 - - -
0.7632 99600 0.9978 - - -
0.7640 99700 0.938 - - -
0.7647 99800 0.9999 - - -
0.7655 99900 0.988 - - -
0.7663 100000 0.986 1.1583 0.7184 -
0.7670 100100 1.0122 - - -
0.7678 100200 0.9872 - - -
0.7686 100300 0.9829 - - -
0.7693 100400 0.9791 - - -
0.7701 100500 1.0423 - - -
0.7709 100600 0.9619 - - -
0.7716 100700 0.9736 - - -
0.7724 100800 0.9769 - - -
0.7732 100900 0.9629 - - -
0.7739 101000 1.0041 - - -
0.7747 101100 0.9206 - - -
0.7755 101200 0.9799 - - -
0.7762 101300 0.9833 - - -
0.7770 101400 0.9734 - - -
0.7778 101500 1.0135 - - -
0.7785 101600 0.9531 - - -
0.7793 101700 0.964 - - -
0.7801 101800 0.9997 - - -
0.7808 101900 0.9935 - - -
0.7816 102000 0.9955 1.1245 0.7108 -
0.7824 102100 1.0063 - - -
0.7831 102200 0.9694 - - -
0.7839 102300 1.0218 - - -
0.7847 102400 0.9829 - - -
0.7854 102500 0.9296 - - -
0.7862 102600 0.9445 - - -
0.7870 102700 1.0018 - - -
0.7877 102800 0.9922 - - -
0.7885 102900 0.9909 - - -
0.7893 103000 1.0044 - - -
0.7900 103100 0.9517 - - -
0.7908 103200 0.9839 - - -
0.7916 103300 0.9815 - - -
0.7923 103400 0.9659 - - -
0.7931 103500 0.9523 - - -
0.7939 103600 0.9765 - - -
0.7946 103700 0.9637 - - -
0.7954 103800 0.9755 - - -
0.7962 103900 0.9678 - - -
0.7969 104000 0.9523 1.1226 0.7162 -
0.7977 104100 0.9122 - - -
0.7985 104200 0.9592 - - -
0.7992 104300 0.9193 - - -
0.8000 104400 0.9978 - - -
0.8008 104500 0.9319 - - -
0.8015 104600 0.9774 - - -
0.8023 104700 0.9367 - - -
0.8031 104800 1.0004 - - -
0.8038 104900 0.9217 - - -
0.8046 105000 0.9178 - - -
0.8054 105100 0.9663 - - -
0.8061 105200 0.954 - - -
0.8069 105300 0.9788 - - -
0.8077 105400 0.9637 - - -
0.8084 105500 0.943 - - -
0.8092 105600 0.9638 - - -
0.8099 105700 0.9842 - - -
0.8107 105800 0.9395 - - -
0.8115 105900 0.9389 - - -
0.8122 106000 0.9854 1.3013 0.6852 -
0.8130 106100 0.9753 - - -
0.8138 106200 0.9149 - - -
0.8145 106300 0.9607 - - -
0.8153 106400 0.9677 - - -
0.8161 106500 0.9344 - - -
0.8168 106600 0.9421 - - -
0.8176 106700 0.9477 - - -
0.8184 106800 0.8942 - - -
0.8191 106900 0.9954 - - -
0.8199 107000 0.9055 - - -
0.8207 107100 0.8938 - - -
0.8214 107200 0.9232 - - -
0.8222 107300 0.9558 - - -
0.8230 107400 0.9662 - - -
0.8237 107500 0.9581 - - -
0.8245 107600 0.9284 - - -
0.8253 107700 0.954 - - -
0.8260 107800 0.9625 - - -
0.8268 107900 0.9435 - - -
0.8276 108000 0.9776 1.2523 0.7004 -
0.8283 108100 0.9071 - - -
0.8291 108200 0.9719 - - -
0.8299 108300 0.9507 - - -
0.8306 108400 0.934 - - -
0.8314 108500 0.9362 - - -
0.8322 108600 0.8922 - - -
0.8329 108700 0.9779 - - -
0.8337 108800 0.8624 - - -
0.8345 108900 0.9046 - - -
0.8352 109000 0.9152 - - -
0.8360 109100 0.933 - - -
0.8368 109200 0.9054 - - -
0.8375 109300 0.9383 - - -
0.8383 109400 0.9204 - - -
0.8391 109500 0.8786 - - -
0.8398 109600 0.933 - - -
0.8406 109700 0.8507 - - -
0.8414 109800 0.8931 - - -
0.8421 109900 0.9045 - - -
0.8429 110000 0.926 1.2050 0.7128 -
0.8437 110100 0.9332 - - -
0.8444 110200 0.9144 - - -
0.8452 110300 0.8979 - - -
0.8460 110400 0.9142 - - -
0.8467 110500 0.8362 - - -
0.8475 110600 0.9579 - - -
0.8483 110700 0.8762 - - -
0.8490 110800 0.8719 - - -
0.8498 110900 0.9494 - - -
0.8506 111000 0.8743 - - -
0.8513 111100 0.9266 - - -
0.8521 111200 0.8943 - - -
0.8529 111300 0.908 - - -
0.8536 111400 0.8316 - - -
0.8544 111500 0.8574 - - -
0.8552 111600 0.8587 - - -
0.8559 111700 0.8862 - - -
0.8567 111800 0.8303 - - -
0.8575 111900 0.8252 - - -
0.8582 112000 0.8726 1.2884 0.704 -
0.8590 112100 0.8788 - - -
0.8598 112200 0.8197 - - -
0.8605 112300 0.8406 - - -
0.8613 112400 0.8634 - - -
0.8621 112500 0.8347 - - -
0.8628 112600 0.8558 - - -
0.8636 112700 0.8313 - - -
0.8644 112800 0.8221 - - -
0.8651 112900 0.8508 - - -
0.8659 113000 0.8214 - - -
0.8667 113100 0.8185 - - -
0.8674 113200 0.8198 - - -
0.8682 113300 0.8681 - - -
0.8690 113400 0.8676 - - -
0.8697 113500 0.838 - - -
0.8705 113600 0.8215 - - -
0.8713 113700 0.8468 - - -
0.8720 113800 0.807 - - -
0.8728 113900 0.8392 - - -
0.8735 114000 0.8318 1.2201 0.7272 -
0.8743 114100 0.824 - - -
0.8751 114200 0.7816 - - -
0.8758 114300 0.8095 - - -
0.8766 114400 0.8412 - - -
0.8774 114500 0.8514 - - -
0.8781 114600 0.836 - - -
0.8789 114700 0.8375 - - -
0.8797 114800 0.8267 - - -
0.8804 114900 0.7925 - - -
0.8812 115000 0.7948 - - -
0.8820 115100 0.7908 - - -
0.8827 115200 0.8092 - - -
0.8835 115300 0.7942 - - -
0.8843 115400 0.7551 - - -
0.8850 115500 0.7717 - - -
0.8858 115600 0.764 - - -
0.8866 115700 0.8025 - - -
0.8873 115800 0.8182 - - -
0.8881 115900 0.7158 - - -
0.8889 116000 0.7632 1.2520 0.7258 -
0.8896 116100 0.7593 - - -
0.8904 116200 0.8032 - - -
0.8912 116300 0.7809 - - -
0.8919 116400 0.7251 - - -
0.8927 116500 0.802 - - -
0.8935 116600 0.7949 - - -
0.8942 116700 0.7827 - - -
0.8950 116800 0.79 - - -
0.8958 116900 0.7668 - - -
0.8965 117000 0.8076 - - -
0.8973 117100 0.7533 - - -
0.8981 117200 0.752 - - -
0.8988 117300 0.7225 - - -
0.8996 117400 0.7694 - - -
0.9004 117500 0.7941 - - -
0.9011 117600 0.7548 - - -
0.9019 117700 0.7617 - - -
0.9027 117800 0.7693 - - -
0.9034 117900 0.7304 - - -
0.9042 118000 0.7955 1.2687 0.7324 -
0.9050 118100 0.7567 - - -
0.9057 118200 0.7253 - - -
0.9065 118300 0.756 - - -
0.9073 118400 0.7583 - - -
0.9080 118500 0.7559 - - -
0.9088 118600 0.7462 - - -
0.9096 118700 0.7433 - - -
0.9103 118800 0.7701 - - -
0.9111 118900 0.7541 - - -
0.9119 119000 0.7084 - - -
0.9126 119100 0.7207 - - -
0.9134 119200 0.7435 - - -
0.9142 119300 0.7528 - - -
0.9149 119400 0.7179 - - -
0.9157 119500 0.7276 - - -
0.9165 119600 0.7307 - - -
0.9172 119700 0.7484 - - -
0.9180 119800 1.1472 - - -
0.9188 119900 1.318 - - -
0.9195 120000 1.4042 1.2499 0.7238 -
0.9203 120100 1.2455 - - -
0.9211 120200 1.3026 - - -
0.9218 120300 1.0223 - - -
0.9226 120400 1.0531 - - -
0.9234 120500 1.1072 - - -
0.9241 120600 1.0879 - - -
0.9249 120700 1.0663 - - -
0.9257 120800 0.9457 - - -
0.9264 120900 1.1087 - - -
0.9272 121000 1.0896 - - -
0.9280 121100 1.0722 - - -
0.9287 121200 1.0552 - - -
0.9295 121300 1.1524 - - -
0.9303 121400 1.0925 - - -
0.9310 121500 1.0797 - - -
0.9318 121600 1.0849 - - -
0.9326 121700 1.0821 - - -
0.9333 121800 1.0373 - - -
0.9341 121900 1.1126 - - -
0.9349 122000 1.1339 1.2329 0.7186 -
0.9356 122100 1.1165 - - -
0.9364 122200 1.0295 - - -
0.9372 122300 0.9693 - - -
0.9379 122400 0.9914 - - -
0.9387 122500 0.9932 - - -
0.9394 122600 0.9796 - - -
0.9402 122700 0.9148 - - -
0.9410 122800 1.0079 - - -
0.9417 122900 0.9644 - - -
0.9425 123000 0.975 - - -
0.9433 123100 0.9657 - - -
0.9440 123200 0.944 - - -
0.9448 123300 1.0591 - - -
0.9456 123400 1.0175 - - -
0.9463 123500 0.9659 - - -
0.9471 123600 1.0315 - - -
0.9479 123700 0.9716 - - -
0.9486 123800 0.9887 - - -
0.9494 123900 0.9873 - - -
0.9502 124000 1.006 1.2707 0.7128 -
0.9509 124100 0.978 - - -
0.9517 124200 0.9194 - - -
0.9525 124300 0.8852 - - -
0.9532 124400 0.9265 - - -
0.9540 124500 0.956 - - -
0.9548 124600 0.87 - - -
0.9555 124700 0.8636 - - -
0.9563 124800 0.8749 - - -
0.9571 124900 0.8762 - - -
0.9578 125000 0.8432 - - -
0.9586 125100 0.8887 - - -
0.9594 125200 0.9097 - - -
0.9601 125300 0.823 - - -
0.9609 125400 0.8976 - - -
0.9617 125500 1.1025 - - -
0.9624 125600 0.9468 - - -
0.9632 125700 0.9733 - - -
0.9640 125800 0.9353 - - -
0.9647 125900 0.8633 - - -
0.9655 126000 0.9196 1.2893 0.7106 -
0.9663 126100 0.8514 - - -
0.9670 126200 0.8513 - - -
0.9678 126300 0.8597 - - -
0.9686 126400 0.929 - - -
0.9693 126500 0.9397 - - -
0.9701 126600 1.1423 - - -
0.9709 126700 1.0804 - - -
0.9716 126800 1.035 - - -
0.9724 126900 1.046 - - -
0.9732 127000 1.0308 - - -
0.9739 127100 0.985 - - -
0.9747 127200 1.0493 - - -
0.9755 127300 1.6257 - - -
0.9762 127400 0.9725 - - -
0.9770 127500 0.907 - - -
0.9778 127600 0.7219 - - -
0.9785 127700 0.7454 - - -
0.9793 127800 0.8149 - - -
0.9801 127900 0.6161 - - -
0.9808 128000 0.6559 1.3419 0.7106 -
0.9816 128100 0.6442 - - -
0.9824 128200 0.6461 - - -
0.9831 128300 0.7225 - - -
0.9839 128400 0.7092 - - -
0.9847 128500 0.7962 - - -
0.9854 128600 0.6362 - - -
0.9862 128700 0.815 - - -
0.9870 128800 0.7114 - - -
0.9877 128900 0.699 - - -
0.9885 129000 0.6741 - - -
0.9893 129100 0.5924 - - -
0.9900 129200 0.6305 - - -
0.9908 129300 0.9403 - - -
0.9916 129400 0.6837 - - -
0.9923 129500 0.8546 - - -
0.9931 129600 0.9752 - - -
0.9939 129700 0.9003 - - -
0.9946 129800 0.9449 - - -
0.9954 129900 0.871 - - -
0.9962 130000 0.7516 1.3455 0.7102 -
0.9969 130100 0.9024 - - -
0.9977 130200 0.8981 - - -
0.9985 130300 1.247 - - -
0.9992 130400 0.9558 - - -
1.0000 130500 0.9919 - - -
1.0 130502 - - - 0.67

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}