metadata
base_model: BAAI/bge-m3
language:
- hu
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200000
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Emberek várnak a lámpánál kerékpárral.
sentences:
- Az emberek piros lámpánál haladnak.
- Az emberek a kerékpárjukon vannak.
- Egy fekete kutya úszik a vízben egy teniszlabdával a szájában
- source_sentence: A kutya a vízben van.
sentences:
- >-
Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik
pedig a tetőn.
- A macska a vízben van, és dühös.
- Egy kutya van a vízben, a szájában egy faág.
- source_sentence: A nő feketét visel.
sentences:
- Egy barna kutya fröcsköl, ahogy úszik a vízben.
- Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre.
- >-
Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A
képen:
- source_sentence: Az emberek alszanak.
sentences:
- Három ember beszélget egy városi utcán.
- A nő fehéret visel.
- Egy apa és a fia ölelgeti alvás közben.
- source_sentence: Az emberek alszanak.
sentences:
- >-
Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében,
miközben egy idősebb nő átmegy az utcán.
- >-
Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy
bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép
jobb oldalán lévő erős elmosódás tesz kivehetetlenné.
- Egy apa és a fia ölelgeti alvás közben.
model-index:
- name: gte_hun
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.979
name: Cosine Accuracy
- type: dot_accuracy
value: 0.021
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9804
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.979
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9804
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.979
name: Cosine Accuracy
- type: dot_accuracy
value: 0.021
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9804
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.979
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9804
name: Max Accuracy
gte_hun
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- train
- Language: hu
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("karsar/bge-m3-hu")
# Run inference
sentences = [
'Az emberek alszanak.',
'Egy apa és a fia ölelgeti alvás közben.',
'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.979 |
dot_accuracy | 0.021 |
manhattan_accuracy | 0.9804 |
euclidean_accuracy | 0.979 |
max_accuracy | 0.9804 |
Triplet
- Dataset:
all-nli-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.979 |
dot_accuracy | 0.021 |
manhattan_accuracy | 0.9804 |
euclidean_accuracy | 0.979 |
max_accuracy | 0.9804 |
Training Details
Training Dataset
train
- Dataset: train
- Size: 200,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 11.73 tokens
- max: 56 tokens
- min: 6 tokens
- mean: 15.24 tokens
- max: 47 tokens
- min: 7 tokens
- mean: 16.07 tokens
- max: 53 tokens
- Samples:
anchor positive negative Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.
Egy ember a szabadban, lóháton.
Egy ember egy étteremben van, és omlettet rendel.
Gyerekek mosolyogva és integetett a kamera
Gyermekek vannak jelen
A gyerekek homlokot rántanak
Egy fiú ugrál a gördeszkát a közepén egy piros híd.
A fiú gördeszkás trükköt csinál.
A fiú korcsolyázik a járdán.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
train
- Dataset: train
- Size: 5,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 11.73 tokens
- max: 56 tokens
- min: 6 tokens
- mean: 15.24 tokens
- max: 47 tokens
- min: 7 tokens
- mean: 16.07 tokens
- max: 53 tokens
- Samples:
anchor positive negative Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.
Egy ember a szabadban, lóháton.
Egy ember egy étteremben van, és omlettet rendel.
Gyerekek mosolyogva és integetett a kamera
Gyermekek vannak jelen
A gyerekek homlokot rántanak
Egy fiú ugrál a gördeszkát a közepén egy piros híd.
A fiú gördeszkás trükköt csinál.
A fiú korcsolyázik a járdán.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | train loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7176 | - |
0.008 | 100 | 1.0753 | - | - | - |
0.016 | 200 | 0.7611 | - | - | - |
0.024 | 300 | 1.0113 | - | - | - |
0.032 | 400 | 0.6224 | - | - | - |
0.04 | 500 | 0.8465 | 0.6159 | 0.8938 | - |
0.048 | 600 | 0.7761 | - | - | - |
0.056 | 700 | 0.8738 | - | - | - |
0.064 | 800 | 0.9393 | - | - | - |
0.072 | 900 | 0.9743 | - | - | - |
0.08 | 1000 | 0.8445 | 0.4556 | 0.8916 | - |
0.088 | 1100 | 0.7237 | - | - | - |
0.096 | 1200 | 0.8064 | - | - | - |
0.104 | 1300 | 0.607 | - | - | - |
0.112 | 1400 | 0.7632 | - | - | - |
0.12 | 1500 | 0.7477 | 1.6880 | 0.6748 | - |
0.128 | 1600 | 1.018 | - | - | - |
0.136 | 1700 | 0.9046 | - | - | - |
0.144 | 1800 | 0.728 | - | - | - |
0.152 | 1900 | 0.7219 | - | - | - |
0.16 | 2000 | 0.632 | 0.6459 | 0.8622 | - |
0.168 | 2100 | 0.6067 | - | - | - |
0.176 | 2200 | 0.7267 | - | - | - |
0.184 | 2300 | 0.781 | - | - | - |
0.192 | 2400 | 0.662 | - | - | - |
0.2 | 2500 | 0.6192 | 1.0124 | 0.8328 | - |
0.208 | 2600 | 0.7943 | - | - | - |
0.216 | 2700 | 0.8762 | - | - | - |
0.224 | 2800 | 0.7913 | - | - | - |
0.232 | 2900 | 0.8049 | - | - | - |
0.24 | 3000 | 0.858 | 0.6378 | 0.8046 | - |
0.248 | 3100 | 0.679 | - | - | - |
0.256 | 3200 | 0.7213 | - | - | - |
0.264 | 3300 | 0.6028 | - | - | - |
0.272 | 3400 | 0.5778 | - | - | - |
0.28 | 3500 | 0.5434 | 0.6784 | 0.8496 | - |
0.288 | 3600 | 0.6726 | - | - | - |
0.296 | 3700 | 0.7347 | - | - | - |
0.304 | 3800 | 0.8413 | - | - | - |
0.312 | 3900 | 0.7993 | - | - | - |
0.32 | 4000 | 0.8899 | 0.7732 | 0.8092 | - |
0.328 | 4100 | 1.1505 | - | - | - |
0.336 | 4200 | 0.8871 | - | - | - |
0.344 | 4300 | 0.8423 | - | - | - |
0.352 | 4400 | 0.8288 | - | - | - |
0.36 | 4500 | 0.6728 | 0.6341 | 0.8436 | - |
0.368 | 4600 | 0.7534 | - | - | - |
0.376 | 4700 | 0.8276 | - | - | - |
0.384 | 4800 | 0.7677 | - | - | - |
0.392 | 4900 | 0.588 | - | - | - |
0.4 | 5000 | 0.7742 | 0.4389 | 0.8808 | - |
0.408 | 5100 | 0.6782 | - | - | - |
0.416 | 5200 | 0.6688 | - | - | - |
0.424 | 5300 | 0.5579 | - | - | - |
0.432 | 5400 | 0.6891 | - | - | - |
0.44 | 5500 | 0.5764 | 0.4192 | 0.902 | - |
0.448 | 5600 | 0.6152 | - | - | - |
0.456 | 5700 | 0.6864 | - | - | - |
0.464 | 5800 | 0.6429 | - | - | - |
0.472 | 5900 | 0.9379 | - | - | - |
0.48 | 6000 | 0.7607 | 0.4744 | 0.8736 | - |
0.488 | 6100 | 0.819 | - | - | - |
0.496 | 6200 | 0.6316 | - | - | - |
0.504 | 6300 | 0.8175 | - | - | - |
0.512 | 6400 | 0.8485 | - | - | - |
0.52 | 6500 | 0.5374 | 0.4860 | 0.916 | - |
0.528 | 6600 | 0.781 | - | - | - |
0.536 | 6700 | 0.7722 | - | - | - |
0.544 | 6800 | 0.7281 | - | - | - |
0.552 | 6900 | 0.8453 | - | - | - |
0.56 | 7000 | 0.8541 | 0.2612 | 0.9322 | - |
0.568 | 7100 | 0.9698 | - | - | - |
0.576 | 7200 | 0.7184 | - | - | - |
0.584 | 7300 | 0.699 | - | - | - |
0.592 | 7400 | 0.5574 | - | - | - |
0.6 | 7500 | 0.5374 | 0.1939 | 0.9472 | - |
0.608 | 7600 | 0.6485 | - | - | - |
0.616 | 7700 | 0.5177 | - | - | - |
0.624 | 7800 | 0.814 | - | - | - |
0.632 | 7900 | 0.6442 | - | - | - |
0.64 | 8000 | 0.5301 | 0.1192 | 0.9616 | - |
0.648 | 8100 | 0.4948 | - | - | - |
0.656 | 8200 | 0.426 | - | - | - |
0.664 | 8300 | 0.4781 | - | - | - |
0.672 | 8400 | 0.4188 | - | - | - |
0.68 | 8500 | 0.5695 | 0.1523 | 0.9492 | - |
0.688 | 8600 | 0.3895 | - | - | - |
0.696 | 8700 | 0.5041 | - | - | - |
0.704 | 8800 | 0.7599 | - | - | - |
0.712 | 8900 | 0.5893 | - | - | - |
0.72 | 9000 | 0.6678 | 0.1363 | 0.9588 | - |
0.728 | 9100 | 0.5917 | - | - | - |
0.736 | 9200 | 0.6201 | - | - | - |
0.744 | 9300 | 0.5072 | - | - | - |
0.752 | 9400 | 0.4233 | - | - | - |
0.76 | 9500 | 0.396 | 0.2490 | 0.937 | - |
0.768 | 9600 | 0.3699 | - | - | - |
0.776 | 9700 | 0.3734 | - | - | - |
0.784 | 9800 | 0.4145 | - | - | - |
0.792 | 9900 | 0.4422 | - | - | - |
0.8 | 10000 | 0.4427 | 0.1394 | 0.9634 | - |
0.808 | 10100 | 0.678 | - | - | - |
0.816 | 10200 | 0.6771 | - | - | - |
0.824 | 10300 | 0.8249 | - | - | - |
0.832 | 10400 | 0.5003 | - | - | - |
0.84 | 10500 | 0.5586 | 0.1006 | 0.9726 | - |
0.848 | 10600 | 0.4649 | - | - | - |
0.856 | 10700 | 0.5322 | - | - | - |
0.864 | 10800 | 0.4837 | - | - | - |
0.872 | 10900 | 0.5717 | - | - | - |
0.88 | 11000 | 0.4403 | 0.1009 | 0.9688 | - |
0.888 | 11100 | 0.5044 | - | - | - |
0.896 | 11200 | 0.4771 | - | - | - |
0.904 | 11300 | 0.4426 | - | - | - |
0.912 | 11400 | 0.3705 | - | - | - |
0.92 | 11500 | 0.4445 | 0.0992 | 0.978 | - |
0.928 | 11600 | 0.3707 | - | - | - |
0.936 | 11700 | 0.4322 | - | - | - |
0.944 | 11800 | 0.4619 | - | - | - |
0.952 | 11900 | 0.4772 | - | - | - |
0.96 | 12000 | 0.5756 | 0.0950 | 0.9804 | - |
0.968 | 12100 | 0.5649 | - | - | - |
0.976 | 12200 | 0.5037 | - | - | - |
0.984 | 12300 | 0.0317 | - | - | - |
0.992 | 12400 | 0.0001 | - | - | - |
1.0 | 12500 | 0.0001 | 0.0948 | 0.9804 | 0.9804 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.44.0
- PyTorch: 2.3.0.post101
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}