Intended uses & limitations

How to use

You can use this model with spacy.

!pip install https://huggingface.co/karthid/ta_Tamil_NER/resolve/main/ta_Tamil_NER-any-py3-none-any.whl

import ta_Tamil_NER

from spacy import displacy

nlp = ta_Tamil_NER.load()

doc = nlp("கூகுள் நிறுவனம் தனது முக்கிய வசதியான ஸ்ட்ரீட் வியூ வசதியை 10 நகரங்களில் இந்தியாவில் அறிமுகப்படுத்தி உள்ளது.")

displacy.render(doc,jupyter=True, style = "ent")

Feature Description
Name ta_Tamil_NER
Version 0.0.0
spaCy >=3.2.4,<3.3.0
Default Pipeline transformer, ner
Components transformer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License n/a
Author Karthi Dhayalan

Label Scheme

View label scheme
Component Labels
ner B-PER, I-PER, B-ORG, I-ORG, B-LOC, I-LOC

Accuracy

Type Score
ENTS_F 84.92
ENTS_P 84.34
ENTS_R 85.52
TRANSFORMER_LOSS 1842600.06
NER_LOSS 108788.05
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results