distilbert-base-uncased-finetuned-sst2-midterm

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3341
  • Accuracy: 0.9048
  • F1: 0.9048
  • F1 0 Class: 0.9022
  • F1 1 Class: 0.9073
  • Precision 0 Class: 0.9097
  • Precision 1 Class: 0.9002
  • Recall 0 Class: 0.8949
  • Recall 1 Class: 0.9144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 F1 0 Class F1 1 Class Precision 0 Class Precision 1 Class Recall 0 Class Recall 1 Class
0.4244 1.0 109 0.2882 0.8842 0.8841 0.8790 0.8889 0.9017 0.8688 0.8575 0.9099
0.2289 2.0 218 0.2641 0.8922 0.8922 0.8889 0.8953 0.8995 0.8855 0.8785 0.9054
0.1517 3.0 327 0.3000 0.8933 0.8934 0.8930 0.8937 0.8798 0.9072 0.9065 0.8806
0.1048 4.0 436 0.3217 0.8991 0.8990 0.8952 0.9027 0.9126 0.8870 0.8785 0.9189
0.0767 5.0 545 0.3341 0.9048 0.9048 0.9022 0.9073 0.9097 0.9002 0.8949 0.9144

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
20
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kbberendsen/distilbert-base-uncased-finetuned-sst2-midterm

Finetuned
(7046)
this model

Collection including kbberendsen/distilbert-base-uncased-finetuned-sst2-midterm