metadata
library_name: peft
license: apache-2.0
base_model: HuggingFaceTB/SmolVLM-Base
tags:
- generated_from_trainer
model-index:
- name: SmolVLM-Base-vqav2
results: []
SmolVLM-Base-vqav2
This model is a fine-tuned version of HuggingFaceTB/SmolVLM-Base on an unknown dataset.
Model description
Here is the sample code for how to use.
from transformers import AutoProcessor, AutoModelForImageTextToText
from peft import PeftModel
import torch
from PIL import Image
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" ### DEVICE = "cuda:0" instead of DEVICE = "cuda" it fixes flash attention warning!!
model_id = "HuggingFaceTB/SmolVLM-Instruct" # Base Model
base_model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager"
).to(DEVICE)
print(f"Model is on device: {base_model.device}")
# QLoRA adapter
adapter_path = r"C:\Users\.....\SmolVLM-Base-vqav2\checkpoint-670"
model = PeftModel.from_pretrained(base_model, adapter_path)
model = model.to(DEVICE) # Check the model device #####################################
# Load the processor
processor = AutoProcessor.from_pretrained(model_id)
# Functıon for load images from local
def load_image_from_file(file_path):
try:
image = Image.open(file_path)
return image
except Exception as e:
print(f"Error loading image: {e}")
return None
image1_path = "C:/Users/.../IMG_4.jpg"
image2_path = "C:/Users/.../IMG_35.jpg"
# Load images
image1 = load_image_from_file(image1_path)
image2 = load_image_from_file(image2_path)
# Check the images
if image1 and image2:
# Create message type
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "image"},
{"type": "text", "text": "Can you describe and compare the two images?"}
]
},
]
# Prepare the Prompt
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image1, image2], return_tensors="pt")
inputs = inputs.to(DEVICE)
# Run the model
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
# Print the result
print(generated_texts[0]) # Çıktı
else:
print("Images can not be loaded")
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3