hvc_model / app.py
keffy's picture
Create app.py
8138f28 verified
raw
history blame
1.14 kB
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("best.pt") # Ensure this file is in the same directory as app.py on Hugging Face
# Define the inference function
def predict(image):
# Convert the input image from RGB to BGR (OpenCV format)
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Run the model on the input image
results = model(image_bgr)
# Extract the result image with detections
annotated_image = results[0].plot() # Returns a BGR image with annotations
# Convert the image back to RGB for displaying in Gradio
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
return annotated_image_rgb
# Define the Gradio interface
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy", label="Upload an Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="YOLOv8 Object Detection",
description="Upload an image to detect objects with YOLOv8 model."
)
# Launch the app
if __name__ == "__main__":
interface.launch(share=True)