mbart-ja-en
このモデルはfacebook/mbart-large-cc25をベースにJESC datasetでファインチューニングしたものです。
This model is based on facebook/mbart-large-cc25 and fine-tuned with JESC dataset.
How to use
from transformers import (
MBartForConditionalGeneration, MBartTokenizer
)
tokenizer = MBartTokenizer.from_pretrained("ken11/mbart-ja-en")
model = MBartForConditionalGeneration.from_pretrained("ken11/mbart-ja-en")
inputs = tokenizer("こんにちは", return_tensors="pt")
translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["en_XX"], early_stopping=True, max_length=48)
pred = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
print(pred)
Training Data
I used the JESC dataset for training.
Thank you for publishing such a large dataset.
Tokenizer
The tokenizer uses the sentencepiece trained on the JESC dataset.
Note
The result of evaluating the sacrebleu score for JEC Basic Sentence Data of Kyoto University was 18.18
.
Licenese
- Downloads last month
- 281
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.