|
--- |
|
library_name: keras-hub |
|
license: mit |
|
language: |
|
- en |
|
tags: |
|
- text-classification |
|
--- |
|
## Model Overview |
|
DeBERTaV3 encoder networks are a set of transformer encoder models published by Microsoft. DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. |
|
|
|
Weights are released under the [MIT License](https://opensource.org/license/mit). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE). |
|
|
|
## Links |
|
|
|
* [DeBERTaV3 Quickstart Notebook](https://www.kaggle.com/code/gabrielrasskin/debertav3-quickstart) |
|
* [DeBERTaV3 API Documentation](https://keras.io/api/keras_hub/models/deberta_v3/deberta_v3_classifier/) |
|
* [DeBERTaV3 Model Paper](https://arxiv.org/abs/2111.09543) |
|
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) |
|
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) |
|
|
|
## Installation |
|
|
|
Keras and KerasHub can be installed with: |
|
|
|
``` |
|
pip install -U -q keras-hub |
|
pip install -U -q keras>=3 |
|
``` |
|
|
|
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. |
|
|
|
## Presets |
|
|
|
The following model checkpoints are provided by the Keras team. Full code examples for each are available below. |
|
|
|
| Preset Name | Parameters | Description | |
|
| :------------------------------- | :------------: | :-------------------------------------------------------------------------------------------------------- | |
|
| `deberta_v3_extra_small_en` | 70.68M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | |
|
| `deberta_v3_small_en` | 141.30M | 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | |
|
| `deberta_v3_base_en` | 183.83M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | |
|
| `deberta_v3_large_en` | 434.01M | 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | |
|
| `deberta_v3_base_multi` | 278.22M | 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset. | |
|
|
|
## Prompts |
|
|
|
DeBERTa's main use as a classifier takes in raw text that is labelled by the class it belongs to. In practice this can look like this: |
|
|
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
``` |
|
|
|
## Example Usage |
|
```python |
|
import keras |
|
import keras_hub |
|
import numpy as np |
|
``` |
|
|
|
Raw string data. |
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier. |
|
classifier = keras_hub.models.DebertaV3Classifier.from_preset( |
|
"deberta_v3_extra_small_en", |
|
num_classes=4, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
classifier.predict(x=features, batch_size=2) |
|
|
|
# Re-compile (e.g., with a new learning rate). |
|
classifier.compile( |
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
|
optimizer=keras.optimizers.Adam(5e-5), |
|
jit_compile=True, |
|
) |
|
# Access backbone programmatically (e.g., to change `trainable`). |
|
classifier.backbone.trainable = False |
|
# Fit again. |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
Preprocessed integer data. |
|
```python |
|
features = { |
|
"token_ids": np.ones(shape=(2, 12), dtype="int32"), |
|
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), |
|
} |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier without preprocessing. |
|
classifier = keras_hub.models.DebertaV3Classifier.from_preset( |
|
"deberta_v3_extra_small_en", |
|
num_classes=4, |
|
preprocessor=None, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
## Example Usage with Hugging Face URI |
|
|
|
```python |
|
import keras |
|
import keras_hub |
|
import numpy as np |
|
``` |
|
|
|
Raw string data. |
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier. |
|
classifier = keras_hub.models.DebertaV3Classifier.from_preset( |
|
"hf://keras/deberta_v3_extra_small_en", |
|
num_classes=4, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
classifier.predict(x=features, batch_size=2) |
|
|
|
# Re-compile (e.g., with a new learning rate). |
|
classifier.compile( |
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
|
optimizer=keras.optimizers.Adam(5e-5), |
|
jit_compile=True, |
|
) |
|
# Access backbone programmatically (e.g., to change `trainable`). |
|
classifier.backbone.trainable = False |
|
# Fit again. |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
Preprocessed integer data. |
|
```python |
|
features = { |
|
"token_ids": np.ones(shape=(2, 12), dtype="int32"), |
|
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), |
|
} |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier without preprocessing. |
|
classifier = keras_hub.models.DebertaV3Classifier.from_preset( |
|
"hf://keras/deberta_v3_extra_small_en", |
|
num_classes=4, |
|
preprocessor=None, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |