metadata
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- image-classification
- pytorch
- awesome-yolov8-models
library_name: ultralytics
library_version: 8.0.23
inference: false
datasets:
- keremberke/painting-style-classification
model-index:
- name: keremberke/yolov8m-painting-classification
results:
- task:
type: image-classification
dataset:
type: keremberke/painting-style-classification
name: painting-style-classification
split: validation
metrics:
- type: accuracy
value: 0.05723
name: top1 accuracy
- type: accuracy
value: 0.21463
name: top5 accuracy
Supported Labels
['Abstract_Expressionism', 'Action_painting', 'Analytical_Cubism', 'Art_Nouveau_Modern', 'Baroque', 'Color_Field_Painting', 'Contemporary_Realism', 'Cubism', 'Early_Renaissance', 'Expressionism', 'Fauvism', 'High_Renaissance', 'Impressionism', 'Mannerism_Late_Renaissance', 'Minimalism', 'Naive_Art_Primitivism', 'New_Realism', 'Northern_Renaissance', 'Pointillism', 'Pop_Art', 'Post_Impressionism', 'Realism', 'Rococo', 'Romanticism', 'Symbolism', 'Synthetic_Cubism', 'Ukiyo_e']
How to use
- Install ultralyticsplus:
pip install ultralyticsplus==0.0.24 ultralytics==8.0.23
- Load model and perform prediction:
from ultralyticsplus import YOLO, postprocess_classify_output
# load model
model = YOLO('keremberke/yolov8m-painting-classification')
# set model parameters
model.overrides['conf'] = 0.25 # model confidence threshold
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result) # {"cat": 0.4, "dog": 0.6}
More models available at: awesome-yolov8-models