|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: opus-em-deberta-3-large-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-em-deberta-3-large-v2 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3445 |
|
- F1: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | F1 | Validation Loss | |
|
|:-------------:|:-----:|:----:|:------:|:---------------:| |
|
| 1.2929 | 1.0 | 179 | 0.1942 | 13.4522 | |
|
| 0.1541 | 2.0 | 359 | 0.1942 | 8.4684 | |
|
| 0.1257 | 3.0 | 538 | 0.1942 | 7.6370 | |
|
| 0.1684 | 4.0 | 718 | 0.6376 | 0.7054 | |
|
| 0.0911 | 5.0 | 897 | 0.1942 | 5.1195 | |
|
| 0.145 | 6.0 | 1077 | 0.7984 | 0.2694 | |
|
| 0.1191 | 7.0 | 1256 | 0.2027 | 2.9415 | |
|
| 0.1008 | 8.0 | 1436 | 0.9023 | 0.1785 | |
|
| 0.3698 | 5.0 | 1795 | 0.3514 | 0.0 | |
|
| 0.299 | 6.0 | 2154 | 0.3469 | 0.0 | |
|
| 0.3531 | 7.0 | 2513 | 0.3420 | 0.0 | |
|
| 0.3892 | 8.0 | 2872 | 0.3428 | 0.0 | |
|
| 0.3706 | 9.0 | 3231 | 0.3421 | 0.0 | |
|
| 0.3863 | 10.0 | 3590 | 0.3445 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|