File size: 3,890 Bytes
2720487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from typing import List

import cv2
import numpy as np
import math
import pypdfium2
from PIL import Image, ImageOps, ImageDraw
import torch
from surya.settings import settings


def convert_if_not_rgb(images: List[Image.Image]) -> List[Image.Image]:
    new_images = []
    for image in images:
        if image.mode != "RGB":
            image = image.convert("RGB")
        new_images.append(image)
    return new_images


def get_total_splits(image_size, processor):
    img_height = list(image_size)[1]
    max_height = settings.DETECTOR_IMAGE_CHUNK_HEIGHT
    processor_height = processor.size["height"]
    if img_height > max_height:
        num_splits = math.ceil(img_height / processor_height)
        return num_splits
    return 1


def split_image(img, processor):
    # This will not modify/return the original image - it will either crop, or copy the image
    img_height = list(img.size)[1]
    max_height = settings.DETECTOR_IMAGE_CHUNK_HEIGHT
    processor_height = processor.size["height"]
    if img_height > max_height:
        num_splits = math.ceil(img_height / processor_height)
        splits = []
        split_heights = []
        for i in range(num_splits):
            top = i * processor_height
            bottom = (i + 1) * processor_height
            if bottom > img_height:
                bottom = img_height
            cropped = img.crop((0, top, img.size[0], bottom))
            height = bottom - top
            if height < processor_height:
                cropped = ImageOps.pad(cropped, (img.size[0], processor_height), color=255, centering=(0, 0))
            splits.append(cropped)
            split_heights.append(height)
        return splits, split_heights
    return [img.copy()], [img_height]


def prepare_image_detection(img, processor):
    new_size = (processor.size["width"], processor.size["height"])

    # This double resize actually necessary for downstream accuracy
    img.thumbnail(new_size, Image.Resampling.LANCZOS)
    img = img.resize(new_size, Image.Resampling.LANCZOS) # Stretch smaller dimension to fit new size

    img = np.asarray(img, dtype=np.uint8)
    img = processor(img)["pixel_values"][0]
    img = torch.from_numpy(img)
    return img


def open_pdf(pdf_filepath):
    return pypdfium2.PdfDocument(pdf_filepath)


def get_page_images(doc, indices: List, dpi=settings.IMAGE_DPI):
    renderer = doc.render(
        pypdfium2.PdfBitmap.to_pil,
        page_indices=indices,
        scale=dpi / 72,
    )
    images = list(renderer)
    images = [image.convert("RGB") for image in images]
    return images


def slice_bboxes_from_image(image: Image.Image, bboxes):
    lines = []
    for bbox in bboxes:
        line = image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
        lines.append(line)
    return lines


def slice_polys_from_image(image: Image.Image, polys):
    image_array = np.array(image, dtype=np.uint8)
    lines = []
    for idx, poly in enumerate(polys):
        lines.append(slice_and_pad_poly(image_array, poly))
    return lines


def slice_and_pad_poly(image_array: np.array, coordinates):
    # Draw polygon onto mask
    coordinates = [(corner[0], corner[1]) for corner in coordinates]
    bbox = [min([x[0] for x in coordinates]), min([x[1] for x in coordinates]), max([x[0] for x in coordinates]), max([x[1] for x in coordinates])]

    # We mask out anything not in the polygon
    cropped_polygon = image_array[bbox[1]:bbox[3], bbox[0]:bbox[2]].copy()
    coordinates = [(x - bbox[0], y - bbox[1]) for x, y in coordinates]

    # Pad the area outside the polygon with the pad value
    mask = np.zeros(cropped_polygon.shape[:2], dtype=np.uint8)
    cv2.fillPoly(mask, [np.int32(coordinates)], 1)
    mask = np.stack([mask] * 3, axis=-1)

    cropped_polygon[mask == 0] = settings.RECOGNITION_PAD_VALUE
    rectangle_image = Image.fromarray(cropped_polygon)

    return rectangle_image