File size: 10,217 Bytes
2720487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from typing import List
import torch
from PIL import Image
from surya.input.processing import convert_if_not_rgb
from surya.postprocessing.math.latex import fix_math, contains_math
from surya.postprocessing.text import truncate_repetitions
from surya.settings import settings
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F
def get_batch_size():
batch_size = settings.RECOGNITION_BATCH_SIZE
if batch_size is None:
batch_size = 32
if settings.TORCH_DEVICE_MODEL == "mps":
batch_size = 64 # 12GB RAM max
if settings.TORCH_DEVICE_MODEL == "cuda":
batch_size = 256
return batch_size
def batch_recognition(images: List, languages: List[List[str]], model, processor, batch_size=None):
import inspect
print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&",inspect.getargspec(processor).args)
assert all([isinstance(image, Image.Image) for image in images])
assert len(images) == len(languages)
for l in languages:
assert len(l) <= settings.RECOGNITION_MAX_LANGS, f"OCR only supports up to {settings.RECOGNITION_MAX_LANGS} languages per image, you passed {l}."
images = [image.convert("RGB") for image in images] # also copies the images
if batch_size is None:
batch_size = get_batch_size()
output_text = []
confidences = []
dec_config = model.config.decoder
layer_count = dec_config.decoder_layers
kv_heads = dec_config.kv_heads
head_dim = int(dec_config.d_model / dec_config.decoder_attention_heads)
min_val = torch.finfo(model.dtype).min
if settings.RECOGNITION_STATIC_CACHE:
# We'll re-use these for all batches to avoid recopying
kv_mask = torch.full((batch_size, 1, 1, settings.RECOGNITION_MAX_TOKENS + 1), min_val, dtype=model.dtype, device=model.device)
# The +1 accounts for start token
initial_attn_mask = torch.full((batch_size, 1, settings.RECOGNITION_MAX_LANGS + 1, settings.RECOGNITION_MAX_LANGS + 1), min_val, dtype=model.dtype, device=model.device)
# Decoder kv cache
# 7 (layers) x 2 (kv) x bs x 4 (heads) x max tokens x 64 (head dim)
decoder_cache = [torch.zeros((2, batch_size, kv_heads, settings.RECOGNITION_MAX_TOKENS, head_dim), dtype=model.dtype, device=model.device) for _ in range(layer_count)]
# Prefill
decoder_input = torch.zeros((batch_size, settings.RECOGNITION_MAX_LANGS + 1), dtype=torch.long, device=model.device)
else:
initial_kv_mask = torch.zeros((batch_size, 1, 1, 1), dtype=model.dtype, device=model.device)
initial_attn_mask = torch.zeros((batch_size, 1, settings.RECOGNITION_MAX_LANGS + 1, settings.RECOGNITION_MAX_LANGS + 1), dtype=model.dtype, device=model.device)
processed_batches = processor(text=[""] * len(images), images=images, lang=languages)
for i in tqdm(range(0, len(images), batch_size), desc="Recognizing Text"):
batch_langs = languages[i:i+batch_size]
has_math = ["_math" in lang for lang in batch_langs]
batch_pixel_values = processed_batches["pixel_values"][i:i+batch_size]
batch_langs = processed_batches["langs"][i:i+batch_size]
max_lang_len = max([len(lang) for lang in batch_langs])
# Pad languages to max length if needed, to ensure we can convert to a tensor
for lang_idx in range(len(batch_langs)):
lang_len = len(batch_langs[lang_idx])
if lang_len < max_lang_len:
batch_langs[lang_idx] = [processor.tokenizer.pad_id] * (max_lang_len - lang_len) + batch_langs[lang_idx]
batch_decoder_input = [[model.config.decoder_start_token_id] + lang for lang in batch_langs]
current_batch_size = len(batch_pixel_values)
batch_langs = torch.tensor(np.stack(batch_langs, axis=0), dtype=torch.long, device=model.device)
batch_pixel_values = torch.tensor(np.stack(batch_pixel_values, axis=0), dtype=model.dtype, device=model.device)
batch_decoder_input = torch.tensor(np.stack(batch_decoder_input, axis=0), dtype=torch.long, device=model.device)
token_count = 0
inference_token_count = batch_decoder_input.shape[-1]
batch_predictions = [[] for _ in range(current_batch_size)]
decoder_input_pad = torch.zeros((batch_size - current_batch_size, 1), dtype=torch.long, device=model.device)
if settings.RECOGNITION_STATIC_CACHE:
# Reset shared tensors
if i > 0:
# Decoder cache
for layer_cache in decoder_cache:
layer_cache.fill_(0)
# KV mask
kv_mask.fill_(min_val)
kv_mask[:, :, :, -1] = 0
kv_mask[:, :, :, :inference_token_count] = 0
# Attention mask
initial_attn_mask.fill_(min_val)
# Prefill
decoder_input.fill_(0)
# Prefill attention mask
attention_mask = initial_attn_mask
attention_mask[:, :, -inference_token_count:, -inference_token_count:] = 0
# Prefill input
decoder_input[:current_batch_size, -inference_token_count:] = batch_decoder_input
batch_decoder_input = decoder_input
# Pad to max batch size
batch_langs = torch.cat([batch_langs, torch.zeros((batch_size - current_batch_size, batch_langs.shape[-1]), dtype=torch.long, device=model.device)], dim=0)
batch_pixel_values = torch.cat([batch_pixel_values, torch.zeros((batch_size - current_batch_size,) + batch_pixel_values.shape[1:], dtype=model.dtype, device=model.device)], dim=0)
else:
# Select seed attention mask
kv_mask = initial_kv_mask[:current_batch_size]
kv_mask.fill_(0)
# Select prefill attention mask
attention_mask = initial_attn_mask[:current_batch_size, :, :inference_token_count, :inference_token_count]
decoder_cache = [None] * layer_count
encoder_outputs = None
sequence_scores = None
encoder_cache = [None] * layer_count
all_done = torch.zeros(current_batch_size, dtype=torch.bool, device=model.device)
with torch.no_grad(): # inference_mode doesn't work with torch.compile
# Run post-prefill tokens
while token_count < settings.RECOGNITION_MAX_TOKENS:
is_prefill = token_count == 0
return_dict = model(
decoder_input_ids=batch_decoder_input,
decoder_attention_mask=attention_mask,
decoder_self_kv_cache=None if is_prefill else decoder_cache,
decoder_cross_kv_cache=None if is_prefill else encoder_cache,
decoder_past_token_count=token_count,
decoder_langs=batch_langs,
pixel_values=batch_pixel_values,
encoder_outputs=encoder_outputs,
return_dict=True,
)
logits = return_dict["logits"][:current_batch_size] # Ignore batch padding
preds = torch.argmax(logits[:, -1], dim=-1)
scores = torch.max(F.softmax(logits, dim=-1), dim=-1).values
done = (preds == processor.tokenizer.eos_id) | (preds == processor.tokenizer.pad_id)
done = done
all_done = all_done | done
scores[all_done == 1] = 0
if is_prefill:
sequence_scores = scores
encoder_outputs = (return_dict["encoder_last_hidden_state"],)
else:
sequence_scores = torch.cat([sequence_scores, scores], dim=1)
if all_done.all():
break
past_key_values = return_dict["past_key_values"]
token_range = torch.arange(token_count, token_count + inference_token_count, device=model.device)
for layer_idx, layer in enumerate(past_key_values):
if is_prefill:
encoder_cache[layer_idx] = layer[1]
if settings.RECOGNITION_STATIC_CACHE:
# Fill in entries in static kv cache
decoder_cache[layer_idx][:, :, :, token_range, :] = layer[0][:, :, :, -inference_token_count:, :]
else:
# Cat to generate new kv cache including current tokens
if is_prefill:
decoder_cache[layer_idx] = layer[0]
else:
decoder_cache[layer_idx] = torch.cat([decoder_cache[layer_idx], layer[0]], dim=3)
batch_decoder_input = preds.unsqueeze(1)
if settings.RECOGNITION_STATIC_CACHE:
# Setup new attention mask and input token
kv_mask[:, :, :, token_count:(token_count + inference_token_count)] = 0
batch_decoder_input = torch.cat([batch_decoder_input, decoder_input_pad], dim=0) # Pad to full batch
else:
kv_mask = torch.cat([kv_mask, torch.zeros((current_batch_size, 1, 1, inference_token_count), dtype=model.dtype, device=model.device)], dim=-1)
attention_mask = kv_mask
for j, (pred, status) in enumerate(zip(preds, all_done)):
if not status:
batch_predictions[j].append(int(pred))
token_count += inference_token_count
inference_token_count = batch_decoder_input.shape[-1]
sequence_scores = torch.sum(sequence_scores, dim=-1) / torch.sum(sequence_scores != 0, dim=-1)
detected_text = processor.tokenizer.batch_decode(batch_predictions)
detected_text = [truncate_repetitions(dt) for dt in detected_text]
# Postprocess to fix LaTeX output (add $$ signs, etc)
detected_text = [fix_math(text) if math and contains_math(text) else text for text, math in zip(detected_text, has_math)]
output_text.extend(detected_text)
confidences.extend(sequence_scores.tolist())
return output_text, confidences
|