File size: 4,971 Bytes
2720487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from typing import List, Optional
import numpy as np
import pytesseract
from pytesseract import Output
from tqdm import tqdm
from surya.input.processing import slice_bboxes_from_image
from surya.settings import settings
import os
from concurrent.futures import ProcessPoolExecutor
from surya.detection import get_batch_size as get_det_batch_size
from surya.recognition import get_batch_size as get_rec_batch_size
from surya.languages import CODE_TO_LANGUAGE
def surya_lang_to_tesseract(code: str) -> Optional[str]:
lang_str = CODE_TO_LANGUAGE[code]
try:
tess_lang = TESS_LANGUAGE_TO_CODE[lang_str]
except KeyError:
return None
return tess_lang
def tesseract_ocr(img, bboxes, lang: str):
line_imgs = slice_bboxes_from_image(img, bboxes)
config = f'--tessdata-dir "{settings.TESSDATA_PREFIX}"'
lines = []
for line_img in line_imgs:
line = pytesseract.image_to_string(line_img, lang=lang, config=config)
lines.append(line)
return lines
def tesseract_ocr_parallel(imgs, bboxes, langs: List[str], cpus=None):
tess_parallel_cores = min(len(imgs), get_rec_batch_size())
if not cpus:
cpus = os.cpu_count()
tess_parallel_cores = min(tess_parallel_cores, cpus)
# Tesseract uses up to 4 processes per instance
# Divide by 2 because tesseract doesn't seem to saturate all 4 cores with these small images
tess_parallel = max(tess_parallel_cores // 2, 1)
with ProcessPoolExecutor(max_workers=tess_parallel) as executor:
tess_text = tqdm(executor.map(tesseract_ocr, imgs, bboxes, langs), total=len(imgs), desc="Running tesseract OCR")
tess_text = list(tess_text)
return tess_text
def tesseract_bboxes(img):
arr_img = np.asarray(img, dtype=np.uint8)
ocr = pytesseract.image_to_data(arr_img, output_type=Output.DICT)
bboxes = []
n_boxes = len(ocr['level'])
for i in range(n_boxes):
# It is possible to merge by line here with line number, but it gives bad results.
_, x, y, w, h = ocr['text'][i], ocr['left'][i], ocr['top'][i], ocr['width'][i], ocr['height'][i]
bbox = (x, y, x + w, y + h)
bboxes.append(bbox)
return bboxes
def tesseract_parallel(imgs):
# Tesseract uses 4 threads per instance
tess_parallel_cores = min(len(imgs), get_det_batch_size())
cpus = os.cpu_count()
tess_parallel_cores = min(tess_parallel_cores, cpus)
# Tesseract uses 4 threads per instance
tess_parallel = max(tess_parallel_cores // 4, 1)
with ProcessPoolExecutor(max_workers=tess_parallel) as executor:
tess_bboxes = tqdm(executor.map(tesseract_bboxes, imgs), total=len(imgs), desc="Running tesseract bbox detection")
tess_bboxes = list(tess_bboxes)
return tess_bboxes
TESS_CODE_TO_LANGUAGE = {
"afr": "Afrikaans",
"amh": "Amharic",
"ara": "Arabic",
"asm": "Assamese",
"aze": "Azerbaijani",
"bel": "Belarusian",
"ben": "Bengali",
"bod": "Tibetan",
"bos": "Bosnian",
"bre": "Breton",
"bul": "Bulgarian",
"cat": "Catalan",
"ceb": "Cebuano",
"ces": "Czech",
"chi_sim": "Chinese",
"chr": "Cherokee",
"cym": "Welsh",
"dan": "Danish",
"deu": "German",
"dzo": "Dzongkha",
"ell": "Greek",
"eng": "English",
"epo": "Esperanto",
"est": "Estonian",
"eus": "Basque",
"fas": "Persian",
"fin": "Finnish",
"fra": "French",
"fry": "Western Frisian",
"guj": "Gujarati",
"gla": "Scottish Gaelic",
"gle": "Irish",
"glg": "Galician",
"heb": "Hebrew",
"hin": "Hindi",
"hrv": "Croatian",
"hun": "Hungarian",
"hye": "Armenian",
"iku": "Inuktitut",
"ind": "Indonesian",
"isl": "Icelandic",
"ita": "Italian",
"jav": "Javanese",
"jpn": "Japanese",
"kan": "Kannada",
"kat": "Georgian",
"kaz": "Kazakh",
"khm": "Khmer",
"kir": "Kyrgyz",
"kor": "Korean",
"lao": "Lao",
"lat": "Latin",
"lav": "Latvian",
"lit": "Lithuanian",
"mal": "Malayalam",
"mar": "Marathi",
"mkd": "Macedonian",
"mlt": "Maltese",
"mon": "Mongolian",
"msa": "Malay",
"mya": "Burmese",
"nep": "Nepali",
"nld": "Dutch",
"nor": "Norwegian",
"ori": "Oriya",
"pan": "Punjabi",
"pol": "Polish",
"por": "Portuguese",
"pus": "Pashto",
"ron": "Romanian",
"rus": "Russian",
"san": "Sanskrit",
"sin": "Sinhala",
"slk": "Slovak",
"slv": "Slovenian",
"snd": "Sindhi",
"spa": "Spanish",
"sqi": "Albanian",
"srp": "Serbian",
"swa": "Swahili",
"swe": "Swedish",
"syr": "Syriac",
"tam": "Tamil",
"tel": "Telugu",
"tgk": "Tajik",
"tha": "Thai",
"tir": "Tigrinya",
"tur": "Turkish",
"uig": "Uyghur",
"ukr": "Ukrainian",
"urd": "Urdu",
"uzb": "Uzbek",
"vie": "Vietnamese",
"yid": "Yiddish"
}
TESS_LANGUAGE_TO_CODE = {v:k for k,v in TESS_CODE_TO_LANGUAGE.items()}
|