File size: 19,234 Bytes
2720487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import gc
import warnings

from transformers.activations import ACT2FN
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer

warnings.filterwarnings("ignore", message="torch.utils._pytree._register_pytree_node is deprecated")

import math
from typing import Optional, Tuple, Union

from transformers import SegformerConfig, SegformerForSemanticSegmentation, SegformerDecodeHead, \
    SegformerPreTrainedModel
from surya.model.detection.processor import SegformerImageProcessor
import torch
from torch import nn

from transformers.modeling_outputs import SemanticSegmenterOutput, BaseModelOutput
from surya.settings import settings


def load_model(checkpoint=settings.DETECTOR_MODEL_CHECKPOINT, device=settings.TORCH_DEVICE_DETECTION, dtype=settings.MODEL_DTYPE_DETECTION):
    config = SegformerConfig.from_pretrained(checkpoint)
    model = SegformerForRegressionMask.from_pretrained(checkpoint, torch_dtype=dtype, config=config)
    if "mps" in device:
        print("Warning: MPS may have poor results. This is a bug with MPS, see here - https://github.com/pytorch/pytorch/issues/84936")
    model = model.to(device)
    model = model.eval()
    print(f"Loaded detection model {checkpoint} on device {device} with dtype {dtype}")
    return model


def load_processor(checkpoint=settings.DETECTOR_MODEL_CHECKPOINT):
    processor = SegformerImageProcessor.from_pretrained(checkpoint)
    return processor


class SegformerForMaskMLP(nn.Module):
    def __init__(self, config: SegformerConfig, input_dim, output_dim):
        super().__init__()
        self.proj = nn.Linear(input_dim, output_dim)

    def forward(self, hidden_states: torch.Tensor):
        hidden_states = hidden_states.flatten(2).transpose(1, 2)
        hidden_states = self.proj(hidden_states)
        return hidden_states


class SegformerForMaskDecodeHead(SegformerDecodeHead):
    def __init__(self, config):
        super().__init__(config)
        decoder_layer_hidden_size = getattr(config, "decoder_layer_hidden_size", config.decoder_hidden_size)

        # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size
        mlps = []
        for i in range(config.num_encoder_blocks):
            mlp = SegformerForMaskMLP(config, input_dim=config.hidden_sizes[i], output_dim=decoder_layer_hidden_size)
            mlps.append(mlp)
        self.linear_c = nn.ModuleList(mlps)

        # the following 3 layers implement the ConvModule of the original implementation
        self.linear_fuse = nn.Conv2d(
            in_channels=decoder_layer_hidden_size * config.num_encoder_blocks,
            out_channels=config.decoder_hidden_size,
            kernel_size=1,
            bias=False,
        )
        self.batch_norm = nn.BatchNorm2d(config.decoder_hidden_size)
        self.activation = nn.ReLU()

        self.classifier = nn.Conv2d(config.decoder_hidden_size, config.num_labels, kernel_size=1)

        self.config = config

    def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor:
        batch_size = encoder_hidden_states[-1].shape[0]

        all_hidden_states = ()
        for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.linear_c):
            if self.config.reshape_last_stage is False and encoder_hidden_state.ndim == 3:
                height = width = int(math.sqrt(encoder_hidden_state.shape[-1]))
                encoder_hidden_state = (
                    encoder_hidden_state.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
                )

            # unify channel dimension
            height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3]
            encoder_hidden_state = mlp(encoder_hidden_state)
            encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1)
            encoder_hidden_state = encoder_hidden_state.reshape(batch_size, -1, height, width)
            # upsample
            encoder_hidden_state = encoder_hidden_state.contiguous()
            encoder_hidden_state = nn.functional.interpolate(
                encoder_hidden_state, size=encoder_hidden_states[0].size()[2:], mode="bilinear", align_corners=False
            )
            all_hidden_states += (encoder_hidden_state,)

        hidden_states = self.linear_fuse(torch.cat(all_hidden_states[::-1], dim=1))
        hidden_states = self.batch_norm(hidden_states)
        hidden_states = self.activation(hidden_states)

        # logits are of shape (batch_size, num_labels, height/4, width/4)
        logits = self.classifier(hidden_states)

        return logits


class SegformerOverlapPatchEmbeddings(nn.Module):
    """Construct the overlapping patch embeddings."""

    def __init__(self, patch_size, stride, num_channels, hidden_size):
        super().__init__()
        self.proj = nn.Conv2d(
            num_channels,
            hidden_size,
            kernel_size=patch_size,
            stride=stride,
            padding=patch_size // 2,
        )

        self.layer_norm = nn.LayerNorm(hidden_size)

    def forward(self, pixel_values):
        embeddings = self.proj(pixel_values)
        _, _, height, width = embeddings.shape
        # (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
        # this can be fed to a Transformer layer
        embeddings = embeddings.flatten(2).transpose(1, 2)
        embeddings = self.layer_norm(embeddings)
        return embeddings, height, width


class SegformerEfficientSelfAttention(nn.Module):
    """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
    paper](https://arxiv.org/abs/2102.12122)."""

    def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads

        if self.hidden_size % self.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
                f"heads ({self.num_attention_heads})"
            )

        self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(self.hidden_size, self.all_head_size)
        self.key = nn.Linear(self.hidden_size, self.all_head_size)
        self.value = nn.Linear(self.hidden_size, self.all_head_size)

        self.sr_ratio = sequence_reduction_ratio
        if sequence_reduction_ratio > 1:
            self.sr = nn.Conv2d(
                hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
            )
            self.layer_norm = nn.LayerNorm(hidden_size)

    def transpose_for_scores(self, hidden_states):
        new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        hidden_states = hidden_states.view(new_shape)
        return hidden_states.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        height,
        width,
        output_attentions=False,
    ):
        query_layer = self.transpose_for_scores(self.query(hidden_states))

        if self.sr_ratio > 1:
            batch_size, seq_len, num_channels = hidden_states.shape
            # Reshape to (batch_size, num_channels, height, width)
            hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
            # Apply sequence reduction
            hidden_states = self.sr(hidden_states)
            # Reshape back to (batch_size, seq_len, num_channels)
            hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
            hidden_states = self.layer_norm(hidden_states)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs

class SegformerEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        # patch embeddings
        embeddings = []
        for i in range(config.num_encoder_blocks):
            embeddings.append(
                SegformerOverlapPatchEmbeddings(
                    patch_size=config.patch_sizes[i],
                    stride=config.strides[i],
                    num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
                    hidden_size=config.hidden_sizes[i],
                )
            )
        self.patch_embeddings = nn.ModuleList(embeddings)

        # Transformer blocks
        blocks = []
        cur = 0
        for i in range(config.num_encoder_blocks):
            # each block consists of layers
            layers = []
            if i != 0:
                cur += config.depths[i - 1]
            for j in range(config.depths[i]):
                layers.append(
                    SegformerLayer(
                        config,
                        hidden_size=config.hidden_sizes[i],
                        num_attention_heads=config.num_attention_heads[i],
                        sequence_reduction_ratio=config.sr_ratios[i],
                        mlp_ratio=config.mlp_ratios[i],
                    )
                )
            blocks.append(nn.ModuleList(layers))

        self.block = nn.ModuleList(blocks)

        # Layer norms
        self.layer_norm = nn.ModuleList(
            [nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
        )

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None

        batch_size = pixel_values.shape[0]

        hidden_states = pixel_values
        for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
            embedding_layer, block_layer, norm_layer = x
            # first, obtain patch embeddings
            hidden_states, height, width = embedding_layer(hidden_states)
            # second, send embeddings through blocks
            for i, blk in enumerate(block_layer):
                layer_outputs = blk(hidden_states, height, width, output_attentions)
                hidden_states = layer_outputs[0]
            # third, apply layer norm
            hidden_states = norm_layer(hidden_states)
            # fourth, optionally reshape back to (batch_size, num_channels, height, width)
            if idx != len(self.patch_embeddings) - 1 or (
                idx == len(self.patch_embeddings) - 1 and self.config.reshape_last_stage
            ):
                hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
            all_hidden_states = all_hidden_states + (hidden_states,)

        return all_hidden_states

class SegformerSelfOutput(nn.Module):
    def __init__(self, config, hidden_size):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        return hidden_states


class SegformerAttention(nn.Module):
    def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
        super().__init__()
        self.self = SegformerEfficientSelfAttention(
            config=config,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            sequence_reduction_ratio=sequence_reduction_ratio,
        )
        self.output = SegformerSelfOutput(config, hidden_size=hidden_size)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, hidden_states, height, width, output_attentions=False):
        self_outputs = self.self(hidden_states, height, width, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs

class SegformerDWConv(nn.Module):
    def __init__(self, dim=768):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, hidden_states, height, width):
        batch_size, seq_len, num_channels = hidden_states.shape
        hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
        hidden_states = self.dwconv(hidden_states)
        hidden_states = hidden_states.flatten(2).transpose(1, 2)

        return hidden_states


class SegformerMixFFN(nn.Module):
    def __init__(self, config, in_features, hidden_features=None, out_features=None):
        super().__init__()
        out_features = out_features or in_features
        self.dense1 = nn.Linear(in_features, hidden_features)
        self.dwconv = SegformerDWConv(hidden_features)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
        self.dense2 = nn.Linear(hidden_features, out_features)

    def forward(self, hidden_states, height, width):
        hidden_states = self.dense1(hidden_states)
        hidden_states = self.dwconv(hidden_states, height, width)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.dense2(hidden_states)
        return hidden_states


class SegformerLayer(nn.Module):
    """This corresponds to the Block class in the original implementation."""

    def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio, mlp_ratio):
        super().__init__()
        self.layer_norm_1 = nn.LayerNorm(hidden_size)
        self.attention = SegformerAttention(
            config,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            sequence_reduction_ratio=sequence_reduction_ratio,
        )
        self.layer_norm_2 = nn.LayerNorm(hidden_size)
        mlp_hidden_size = int(hidden_size * mlp_ratio)
        self.mlp = SegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)

    def forward(self, hidden_states, height, width, output_attentions=False):
        self_attention_outputs = self.attention(
            self.layer_norm_1(hidden_states),  # in Segformer, layernorm is applied before self-attention
            height,
            width,
            output_attentions=output_attentions,
        )

        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection (with stochastic depth)
        hidden_states = attention_output + hidden_states

        mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)

        # second residual connection (with stochastic depth)
        layer_output = mlp_output + hidden_states

        outputs = (layer_output,) + outputs

        return outputs

class SegformerModel(SegformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        # hierarchical Transformer encoder
        self.encoder = SegformerEncoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        encoder_outputs = self.encoder(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        return encoder_outputs

class SegformerForRegressionMask(SegformerForSemanticSegmentation):
    def __init__(self, config, **kwargs):
        super().__init__(config)
        self.segformer = SegformerModel(config)
        self.decode_head = SegformerForMaskDecodeHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        **kwargs
    ) -> Union[Tuple, SemanticSegmenterOutput]:

        encoder_hidden_states = self.segformer(
            pixel_values,
            output_attentions=False,
            output_hidden_states=True,  # we need the intermediate hidden states
            return_dict=False,
        )

        logits = self.decode_head(encoder_hidden_states)
        # Apply sigmoid to get 0-1 output
        sigmoid_logits = torch.special.expit(logits)

        return SemanticSegmenterOutput(
            loss=None,
            logits=sigmoid_logits,
            hidden_states=None,
            attentions=None,
        )