File size: 8,082 Bytes
2720487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from typing import Dict, Union, Optional, List, Iterable

import cv2
from torch import TensorType
from transformers import DonutImageProcessor, DonutProcessor
from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import pad, normalize
from transformers.image_utils import PILImageResampling, ImageInput, ChannelDimension, make_list_of_images, get_image_size
import numpy as np
from PIL import Image
import PIL
from test_surya.surya.model.recognition.tokenizer import Byt5LangTokenizer
from surya.settings import settings


def load_processor():
    processor = SuryaProcessor()
    processor.image_processor.train = False
    processor.image_processor.max_size = settings.RECOGNITION_IMAGE_SIZE
    processor.tokenizer.model_max_length = settings.RECOGNITION_MAX_TOKENS
    return processor


class SuryaImageProcessor(DonutImageProcessor):
    def __init__(self, *args, max_size=None, train=False, **kwargs):
        super().__init__(*args, **kwargs)

        self.patch_size = kwargs.get("patch_size", (4, 4))
        self.max_size = max_size
        self.train = train

    @classmethod
    def numpy_resize(cls, image: np.ndarray, size, interpolation=cv2.INTER_LANCZOS4):
        height, width = image.shape[:2]
        max_width, max_height = size["width"], size["height"]

        if (height == max_height and width <= max_width) or (width == max_width and height <= max_height):
            image = image.transpose(2, 0, 1)
            return image

        scale = min(max_width / width, max_height / height)

        new_width = int(width * scale)
        new_height = int(height * scale)

        resized_image = cv2.resize(image, (new_width, new_height), interpolation=interpolation)
        resized_image = resized_image.transpose(2, 0, 1)

        return resized_image

    def process_inner(self, images: List[np.ndarray]):
        assert images[0].shape[2] == 3 # RGB input images, channel dim last

        # Rotate if the bbox is wider than it is tall
        images = [SuryaImageProcessor.align_long_axis(image, size=self.max_size, input_data_format=ChannelDimension.LAST) for image in images]

        # Verify that the image is wider than it is tall
        for img in images:
            assert img.shape[1] >= img.shape[0]

        # This also applies the right channel dim format, to channel x height x width
        images = [SuryaImageProcessor.numpy_resize(img, self.max_size, self.resample) for img in images]
        assert images[0].shape[0] == 3 # RGB input images, channel dim first

        # Convert to float32 for rescale/normalize
        images = [img.astype(np.float32) for img in images]

        # Pads with 255 (whitespace)
        # Pad to max size to improve performance
        max_size = self.max_size
        images = [
            SuryaImageProcessor.pad_image(
                image=image,
                size=max_size,
                input_data_format=ChannelDimension.FIRST,
                pad_value=settings.RECOGNITION_PAD_VALUE
            )
            for image in images
        ]
        # Rescale and normalize
        for idx in range(len(images)):
            images[idx] = images[idx] * self.rescale_factor
        images = [
            SuryaImageProcessor.normalize(img, mean=self.image_mean, std=self.image_std, input_data_format=ChannelDimension.FIRST)
            for img in images
        ]

        return images

    def preprocess(
        self,
        images: ImageInput,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_thumbnail: bool = None,
        do_align_long_axis: bool = None,
        do_pad: bool = None,
        random_padding: bool = False,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> PIL.Image.Image:
        images = make_list_of_images(images)

        # Convert to numpy for later processing steps
        images = [np.array(img) for img in images]
        images = self.process_inner(images)

        data = {"pixel_values": images}
        return BatchFeature(data=data, tensor_type=return_tensors)

    @classmethod
    def pad_image(
        cls,
        image: np.ndarray,
        size: Dict[str, int],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        pad_value: float = 0.0,
    ) -> np.ndarray:
        output_height, output_width = size["height"], size["width"]
        input_height, input_width = get_image_size(image, channel_dim=input_data_format)

        delta_width = output_width - input_width
        delta_height = output_height - input_height

        assert delta_width >= 0 and delta_height >= 0

        pad_top = delta_height // 2
        pad_left = delta_width // 2

        pad_bottom = delta_height - pad_top
        pad_right = delta_width - pad_left

        padding = ((pad_top, pad_bottom), (pad_left, pad_right))
        return pad(image, padding, data_format=data_format, input_data_format=input_data_format, constant_values=pad_value)

    @classmethod
    def align_long_axis(
        cls,
        image: np.ndarray,
        size: Dict[str, int],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        input_height, input_width = image.shape[:2]
        output_height, output_width = size["height"], size["width"]

        if (output_width < output_height and input_width > input_height) or (
            output_width > output_height and input_width < input_height
        ):
            image = np.rot90(image, 3)

        return image

    @classmethod
    def normalize(
        cls,
        image: np.ndarray,
        mean: Union[float, Iterable[float]],
        std: Union[float, Iterable[float]],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        return normalize(
            image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
        )


class SuryaProcessor(DonutProcessor):
    def __init__(self, image_processor=None, tokenizer=None, train=False, **kwargs):
        image_processor = SuryaImageProcessor.from_pretrained(settings.RECOGNITION_MODEL_CHECKPOINT)
        tokenizer = Byt5LangTokenizer()
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")
        if tokenizer is None:
            raise ValueError("You need to specify a `tokenizer`.")

        super().__init__(image_processor, tokenizer)
        self.current_processor = self.image_processor
        self._in_target_context_manager = False

    def __call__(self, *args, **kwargs):
        images = kwargs.pop("images", None)
        text = kwargs.pop("text", None)
        lang = kwargs.pop("lang", None)

        if len(args) > 0:
            images = args[0]
            args = args[1:]

        if images is None and text is None:
            raise ValueError("You need to specify either an `images` or `text` input to process.")

        if images is not None:
            inputs = self.image_processor(images, *args, **kwargs)

        if text is not None:
            encodings = self.tokenizer(text, lang, **kwargs)

        if text is None:
            return inputs
        elif images is None:
            return encodings
        else:
            inputs["labels"] = encodings["input_ids"]
            inputs["langs"] = encodings["langs"]
            return inputs