File size: 7,915 Bytes
2720487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from typing import List, Tuple
import numpy as np
import cv2
import math
from PIL import ImageDraw, ImageFont
from surya.postprocessing.fonts import get_font_path
from surya.postprocessing.util import rescale_bbox
from surya.schema import PolygonBox
from surya.settings import settings
from surya.postprocessing.text import get_text_size
def keep_largest_boxes(boxes: List[PolygonBox]) -> List[PolygonBox]:
new_boxes = []
for box_obj in boxes:
box = box_obj.bbox
box_area = (box[2] - box[0]) * (box[3] - box[1])
contained = False
for other_box_obj in boxes:
if other_box_obj.polygon == box_obj.polygon:
continue
other_box = other_box_obj.bbox
other_box_area = (other_box[2] - other_box[0]) * (other_box[3] - other_box[1])
if box == other_box:
continue
# find overlap percentage
overlap = box_obj.intersection_pct(other_box_obj)
if overlap > .9 and box_area < other_box_area:
contained = True
break
if not contained:
new_boxes.append(box_obj)
return new_boxes
def clean_contained_boxes(boxes: List[PolygonBox]) -> List[PolygonBox]:
new_boxes = []
for box_obj in boxes:
box = box_obj.bbox
contained = False
for other_box_obj in boxes:
if other_box_obj.polygon == box_obj.polygon:
continue
other_box = other_box_obj.bbox
if box == other_box:
continue
if box[0] >= other_box[0] and box[1] >= other_box[1] and box[2] <= other_box[2] and box[3] <= other_box[3]:
contained = True
break
if not contained:
new_boxes.append(box_obj)
return new_boxes
def get_dynamic_thresholds(linemap, text_threshold, low_text, typical_top10_avg=.7):
# Find average intensity of top 10% pixels
# Do top 10% to account for pdfs that are mostly whitespace, etc.
flat_map = linemap.flatten()
sorted_map = np.sort(flat_map)[::-1]
top_10_count = int(np.ceil(len(flat_map) * 0.1))
top_10 = sorted_map[:top_10_count]
avg_intensity = np.mean(top_10)
# Adjust thresholds based on normalized intensityy
scaling_factor = min(1, avg_intensity / typical_top10_avg) ** (1 / 2)
low_text = max(low_text * scaling_factor, 0.1)
text_threshold = max(text_threshold * scaling_factor, 0.15)
low_text = min(low_text, 0.6)
text_threshold = min(text_threshold, 0.8)
return text_threshold, low_text
def detect_boxes(linemap, text_threshold, low_text):
# From CRAFT - https://github.com/clovaai/CRAFT-pytorch
# prepare data
img_h, img_w = linemap.shape
text_threshold, low_text = get_dynamic_thresholds(linemap, text_threshold, low_text)
ret, text_score = cv2.threshold(linemap, low_text, 1, cv2.THRESH_BINARY)
text_score_comb = np.clip(text_score, 0, 1).astype(np.uint8)
label_count, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb, connectivity=4)
det = []
confidences = []
max_confidence = 0
mask = np.zeros_like(linemap, dtype=np.uint8)
for k in range(1, label_count):
# size filtering
size = stats[k, cv2.CC_STAT_AREA]
if size < 10:
continue
# thresholding
if np.max(linemap[labels == k]) < text_threshold:
continue
# make segmentation map
segmap = np.zeros(linemap.shape, dtype=np.uint8)
segmap[labels == k] = 255
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
try:
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
except ValueError:
# Overflow when size is too large
niter = 0
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
# boundary checks
if sx < 0:
sx = 0
if sy < 0:
sy = 0
if ex >= img_w:
ex = img_w
if ey >= img_h:
ey = img_h
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
# make box
np_contours = np.roll(np.array(np.where(segmap != 0)),1, axis=0).transpose().reshape(-1,2)
rectangle = cv2.minAreaRect(np_contours)
box = cv2.boxPoints(rectangle)
# align diamond-shape
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
box_ratio = max(w, h) / (min(w, h) + 1e-5)
if abs(1 - box_ratio) <= 0.1:
l, r = min(np_contours[:, 0]), max(np_contours[:, 0])
t, b = min(np_contours[:, 1]), max(np_contours[:, 1])
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
# make clock-wise order
startidx = box.sum(axis=1).argmin()
box = np.roll(box, 4-startidx, 0)
box = np.array(box)
mask.fill(0)
cv2.fillPoly(mask, [np.int32(box)], 1)
roi = np.where(mask == 1, linemap, 0)
confidence = np.mean(roi[roi != 0])
if confidence > max_confidence:
max_confidence = confidence
confidences.append(confidence)
det.append(box)
if max_confidence > 0:
confidences = [c / max_confidence for c in confidences]
return det, labels, confidences
def get_detected_boxes(textmap, text_threshold=None, low_text=None) -> List[PolygonBox]:
if text_threshold is None:
text_threshold = settings.DETECTOR_TEXT_THRESHOLD
if low_text is None:
low_text = settings.DETECTOR_BLANK_THRESHOLD
textmap = textmap.copy()
textmap = textmap.astype(np.float32)
boxes, labels, confidences = detect_boxes(textmap, text_threshold, low_text)
# From point form to box form
boxes = [PolygonBox(polygon=box, confidence=confidence) for box, confidence in zip(boxes, confidences)]
return boxes
def get_and_clean_boxes(textmap, processor_size, image_size, text_threshold=None, low_text=None) -> List[PolygonBox]:
bboxes = get_detected_boxes(textmap, text_threshold, low_text)
for bbox in bboxes:
bbox.rescale(processor_size, image_size)
bbox.fit_to_bounds([0, 0, image_size[0], image_size[1]])
bboxes = clean_contained_boxes(bboxes)
return bboxes
def draw_bboxes_on_image(bboxes, image, labels=None):
draw = ImageDraw.Draw(image)
for bbox in bboxes:
draw.rectangle(bbox, outline="red", width=3)
return image
def draw_polys_on_image(corners, image, labels=None, box_padding=-1, label_offset=1, label_font_size=10):
draw = ImageDraw.Draw(image)
font_path = get_font_path()
label_font = ImageFont.truetype(font_path, label_font_size)
for i in range(len(corners)):
poly = corners[i]
poly = [(int(p[0]), int(p[1])) for p in poly]
draw.polygon(poly, outline='red', width=1)
if labels is not None:
label = labels[i]
text_position = (
min([p[0] for p in poly]) + label_offset,
min([p[1] for p in poly]) + label_offset
)
text_size = get_text_size(label, label_font)
box_position = (
text_position[0] - box_padding + label_offset,
text_position[1] - box_padding + label_offset,
text_position[0] + text_size[0] + box_padding + label_offset,
text_position[1] + text_size[1] + box_padding + label_offset
)
draw.rectangle(box_position, fill="white")
draw.text(
text_position,
label,
fill="red",
font=label_font
)
return image
|