ketanmore's picture
Upload folder using huggingface_hub
2720487 verified
raw
history blame
8.08 kB
from typing import Dict, Union, Optional, List, Iterable
import cv2
from torch import TensorType
from transformers import DonutImageProcessor, DonutProcessor
from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import pad, normalize
from transformers.image_utils import PILImageResampling, ImageInput, ChannelDimension, make_list_of_images, get_image_size
import numpy as np
from PIL import Image
import PIL
from test_surya.surya.model.recognition.tokenizer import Byt5LangTokenizer
from surya.settings import settings
def load_processor():
processor = SuryaProcessor()
processor.image_processor.train = False
processor.image_processor.max_size = settings.RECOGNITION_IMAGE_SIZE
processor.tokenizer.model_max_length = settings.RECOGNITION_MAX_TOKENS
return processor
class SuryaImageProcessor(DonutImageProcessor):
def __init__(self, *args, max_size=None, train=False, **kwargs):
super().__init__(*args, **kwargs)
self.patch_size = kwargs.get("patch_size", (4, 4))
self.max_size = max_size
self.train = train
@classmethod
def numpy_resize(cls, image: np.ndarray, size, interpolation=cv2.INTER_LANCZOS4):
height, width = image.shape[:2]
max_width, max_height = size["width"], size["height"]
if (height == max_height and width <= max_width) or (width == max_width and height <= max_height):
image = image.transpose(2, 0, 1)
return image
scale = min(max_width / width, max_height / height)
new_width = int(width * scale)
new_height = int(height * scale)
resized_image = cv2.resize(image, (new_width, new_height), interpolation=interpolation)
resized_image = resized_image.transpose(2, 0, 1)
return resized_image
def process_inner(self, images: List[np.ndarray]):
assert images[0].shape[2] == 3 # RGB input images, channel dim last
# Rotate if the bbox is wider than it is tall
images = [SuryaImageProcessor.align_long_axis(image, size=self.max_size, input_data_format=ChannelDimension.LAST) for image in images]
# Verify that the image is wider than it is tall
for img in images:
assert img.shape[1] >= img.shape[0]
# This also applies the right channel dim format, to channel x height x width
images = [SuryaImageProcessor.numpy_resize(img, self.max_size, self.resample) for img in images]
assert images[0].shape[0] == 3 # RGB input images, channel dim first
# Convert to float32 for rescale/normalize
images = [img.astype(np.float32) for img in images]
# Pads with 255 (whitespace)
# Pad to max size to improve performance
max_size = self.max_size
images = [
SuryaImageProcessor.pad_image(
image=image,
size=max_size,
input_data_format=ChannelDimension.FIRST,
pad_value=settings.RECOGNITION_PAD_VALUE
)
for image in images
]
# Rescale and normalize
for idx in range(len(images)):
images[idx] = images[idx] * self.rescale_factor
images = [
SuryaImageProcessor.normalize(img, mean=self.image_mean, std=self.image_std, input_data_format=ChannelDimension.FIRST)
for img in images
]
return images
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_pad: bool = None,
random_padding: bool = False,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
images = make_list_of_images(images)
# Convert to numpy for later processing steps
images = [np.array(img) for img in images]
images = self.process_inner(images)
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
@classmethod
def pad_image(
cls,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
pad_value: float = 0.0,
) -> np.ndarray:
output_height, output_width = size["height"], size["width"]
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
delta_width = output_width - input_width
delta_height = output_height - input_height
assert delta_width >= 0 and delta_height >= 0
pad_top = delta_height // 2
pad_left = delta_width // 2
pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
return pad(image, padding, data_format=data_format, input_data_format=input_data_format, constant_values=pad_value)
@classmethod
def align_long_axis(
cls,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
input_height, input_width = image.shape[:2]
output_height, output_width = size["height"], size["width"]
if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
image = np.rot90(image, 3)
return image
@classmethod
def normalize(
cls,
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
return normalize(
image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
)
class SuryaProcessor(DonutProcessor):
def __init__(self, image_processor=None, tokenizer=None, train=False, **kwargs):
image_processor = SuryaImageProcessor.from_pretrained(settings.RECOGNITION_MODEL_CHECKPOINT)
tokenizer = Byt5LangTokenizer()
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
images = kwargs.pop("images", None)
text = kwargs.pop("text", None)
lang = kwargs.pop("lang", None)
if len(args) > 0:
images = args[0]
args = args[1:]
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(images, *args, **kwargs)
if text is not None:
encodings = self.tokenizer(text, lang, **kwargs)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
inputs["langs"] = encodings["langs"]
return inputs