|
import warnings |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict |
|
from transformers.image_transforms import to_channel_dimension_format |
|
from transformers.image_utils import ( |
|
IMAGENET_DEFAULT_MEAN, |
|
IMAGENET_DEFAULT_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
infer_channel_dimension_format, |
|
make_list_of_images, |
|
) |
|
from transformers.utils import TensorType |
|
|
|
|
|
import PIL.Image |
|
import torch |
|
|
|
|
|
class SegformerImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a Segformer image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `(size["height"], |
|
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. |
|
size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`): |
|
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` |
|
method. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): |
|
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the |
|
`preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` |
|
parameter in the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
do_reduce_labels (`bool`, *optional*, defaults to `False`): |
|
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is |
|
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The |
|
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the |
|
`preprocess` method. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_reduce_labels: bool = False, |
|
**kwargs, |
|
) -> None: |
|
if "reduce_labels" in kwargs: |
|
warnings.warn( |
|
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use " |
|
"`do_reduce_labels` instead.", |
|
FutureWarning, |
|
) |
|
do_reduce_labels = kwargs.pop("reduce_labels") |
|
|
|
super().__init__(**kwargs) |
|
size = size if size is not None else {"height": 512, "width": 512} |
|
size = get_size_dict(size) |
|
self.do_resize = do_resize |
|
self.size = size |
|
self.resample = resample |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN |
|
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD |
|
self.do_reduce_labels = do_reduce_labels |
|
self._valid_processor_keys = [ |
|
"images", |
|
"segmentation_maps", |
|
"do_resize", |
|
"size", |
|
"resample", |
|
"do_rescale", |
|
"rescale_factor", |
|
"do_normalize", |
|
"image_mean", |
|
"image_std", |
|
"do_reduce_labels", |
|
"return_tensors", |
|
"data_format", |
|
"input_data_format", |
|
] |
|
|
|
@classmethod |
|
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): |
|
""" |
|
Overrides the `from_dict` method from the base class to make sure `do_reduce_labels` is updated if image |
|
processor is created using from_dict and kwargs e.g. `SegformerImageProcessor.from_pretrained(checkpoint, |
|
reduce_labels=True)` |
|
""" |
|
image_processor_dict = image_processor_dict.copy() |
|
if "reduce_labels" in kwargs: |
|
image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels") |
|
return super().from_dict(image_processor_dict, **kwargs) |
|
|
|
def _preprocess( |
|
self, |
|
image: ImageInput, |
|
do_resize: bool, |
|
do_rescale: bool, |
|
do_normalize: bool, |
|
size: Optional[Dict[str, int]] = None, |
|
resample: PILImageResampling = None, |
|
rescale_factor: Optional[float] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
): |
|
|
|
if do_rescale: |
|
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) |
|
|
|
if do_normalize: |
|
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) |
|
|
|
return image |
|
|
|
def _preprocess_image( |
|
self, |
|
image: ImageInput, |
|
do_resize: bool = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: bool = None, |
|
rescale_factor: float = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> np.ndarray: |
|
"""Preprocesses a single image.""" |
|
|
|
if input_data_format is None: |
|
input_data_format = infer_channel_dimension_format(image) |
|
|
|
image = self._preprocess( |
|
image=image, |
|
do_resize=do_resize, |
|
size=size, |
|
resample=resample, |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
input_data_format=input_data_format, |
|
) |
|
if data_format is not None: |
|
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) |
|
return image |
|
|
|
def __call__(self, images, segmentation_maps=None, **kwargs): |
|
""" |
|
Preprocesses a batch of images and optionally segmentation maps. |
|
|
|
Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be |
|
passed in as positional arguments. |
|
""" |
|
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
segmentation_maps: Optional[ImageInput] = None, |
|
do_resize: Optional[bool] = None, |
|
size: Optional[Dict[str, int]] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: Optional[bool] = None, |
|
rescale_factor: Optional[float] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_reduce_labels: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: ChannelDimension = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> PIL.Image.Image: |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
segmentation_maps (`ImageInput`, *optional*): |
|
Segmentation map to preprocess. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the image after `resize` is applied. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image values between [0 - 1]. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation. |
|
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`): |
|
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 |
|
is used for background, and background itself is not included in all classes of a dataset (e.g. |
|
ADE20k). The background label will be replaced by 255. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
resample = resample if resample is not None else self.resample |
|
size = size if size is not None else self.size |
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
|
|
images = make_list_of_images(images) |
|
images = [ |
|
self._preprocess_image( |
|
image=img, |
|
do_resize=do_resize, |
|
resample=resample, |
|
size=size, |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
for img in images |
|
] |
|
|
|
data = {"pixel_values": images} |
|
return BatchFeature(data=data, tensor_type=return_tensors) |