Delete surya_yolo_pipeline.py
Browse files- surya_yolo_pipeline.py +0 -169
surya_yolo_pipeline.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import supervision as sv # pip install supervision
|
3 |
-
from ultralytics import YOLO
|
4 |
-
import numpy as np
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
|
7 |
-
yolo_model = YOLO('yolov10x_best.pt')
|
8 |
-
|
9 |
-
|
10 |
-
from surya.model.detection.segformer import load_processor , load_model
|
11 |
-
import torch
|
12 |
-
import os
|
13 |
-
|
14 |
-
|
15 |
-
from surya.model.detection.segformer import load_processor , load_model
|
16 |
-
import torch
|
17 |
-
import os
|
18 |
-
# os.environ['HF_HOME'] = '/share/data/drive_3/ketan/orc/HF_Cache'
|
19 |
-
|
20 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
model = load_model("vikp/surya_layout2").to(device)
|
22 |
-
|
23 |
-
|
24 |
-
from PIL import Image
|
25 |
-
from surya.input.processing import prepare_image_detection
|
26 |
-
|
27 |
-
|
28 |
-
def predicted_mask_function(image_path) :
|
29 |
-
|
30 |
-
img = Image.open(image_path)
|
31 |
-
img = [prepare_image_detection(img=img, processor=load_processor())]
|
32 |
-
img = torch.stack(img, dim=0).to(model.dtype).to(model.device)
|
33 |
-
logits = model(img).logits
|
34 |
-
|
35 |
-
predicted_mask = torch.argmax(logits[0], dim=0).cpu().numpy()
|
36 |
-
|
37 |
-
return predicted_mask
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
def predict_boxes_labels(image_path):
|
42 |
-
results = yolo_model(source=image_path, conf=0.2, iou=0.8)[0]
|
43 |
-
detections = sv.Detections.from_ultralytics(results)
|
44 |
-
labels = detections.data["class_name"].tolist()
|
45 |
-
bboxes = detections.xyxy.tolist()
|
46 |
-
return bboxes,labels
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def resize_segment(mask, class_id, target_size, method=cv2.INTER_AREA):
|
51 |
-
# Create a binary mask for the current class
|
52 |
-
class_mask = np.where(mask == class_id, 1, 0).astype(np.uint8)
|
53 |
-
|
54 |
-
# Resize the class mask to the target size
|
55 |
-
resized_class_mask = cv2.resize(class_mask, (target_size[1], target_size[0]), interpolation=method)
|
56 |
-
|
57 |
-
return resized_class_mask
|
58 |
-
|
59 |
-
def resize_and_combine_classes(mask, target_size, method=cv2.INTER_AREA):
|
60 |
-
unique_classes = np.unique(mask)
|
61 |
-
|
62 |
-
# Initialize a zero-filled mask for the combined result with the correct target size
|
63 |
-
resized_masks = np.zeros((target_size[0], target_size[1]), dtype=np.uint8)
|
64 |
-
|
65 |
-
# Process each class found in the mask
|
66 |
-
for class_id in unique_classes:
|
67 |
-
resized_class_mask = resize_segment(mask, class_id, target_size, method)
|
68 |
-
|
69 |
-
# Assign the class ID to the resized output mask where the resized class mask is 1
|
70 |
-
resized_masks[resized_class_mask == 1] = class_id
|
71 |
-
|
72 |
-
return resized_masks
|
73 |
-
|
74 |
-
|
75 |
-
class_labels = {
|
76 |
-
0: 'Blank',
|
77 |
-
1: 'Caption',
|
78 |
-
2: 'Footnote',
|
79 |
-
3: 'Formula',
|
80 |
-
4: 'List-item',
|
81 |
-
5: 'Page-footer',
|
82 |
-
6: 'Page-header',
|
83 |
-
7: 'Picture',
|
84 |
-
8: 'Section-header',
|
85 |
-
9: 'Table',
|
86 |
-
10: 'Text',
|
87 |
-
11: 'Title'
|
88 |
-
}
|
89 |
-
|
90 |
-
colors = plt.cm.get_cmap('tab20', len(class_labels))
|
91 |
-
|
92 |
-
def colormap_to_rgb(cmap, index):
|
93 |
-
color = cmap(index)[:3] # Extract RGB, ignore alpha
|
94 |
-
return tuple(int(c * 255) for c in color)
|
95 |
-
|
96 |
-
def mask_to_bboxes(colored_mask, class_labels):
|
97 |
-
bboxes = []
|
98 |
-
|
99 |
-
# Loop through each class in the class_labels
|
100 |
-
for label, class_name in class_labels.items():
|
101 |
-
# Get the RGB color for the current label
|
102 |
-
color = colormap_to_rgb(colors, label)
|
103 |
-
|
104 |
-
# Create a binary mask for the current label by checking where the colored mask matches the class color
|
105 |
-
class_mask = np.all(colored_mask == color, axis=-1).astype(np.uint8)
|
106 |
-
|
107 |
-
# Find contours of the class region in the binary mask
|
108 |
-
contours, _ = cv2.findContours(class_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
109 |
-
|
110 |
-
# Loop through all contours and extract bounding boxes
|
111 |
-
for contour in contours:
|
112 |
-
# Get the bounding box for the contour (in xywh format)
|
113 |
-
x, y, w, h = cv2.boundingRect(contour)
|
114 |
-
|
115 |
-
# Convert to xyxy format: (xmin, ymin, xmax, ymax)
|
116 |
-
xmin, ymin, xmax, ymax = x, y, x + w, y + h
|
117 |
-
|
118 |
-
# Append the bounding box with the corresponding class label
|
119 |
-
bboxes.append((xmin, ymin, xmax, ymax))
|
120 |
-
# bboxes.append((xmin, ymin, xmax, ymax, class_name))
|
121 |
-
|
122 |
-
return bboxes
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
import matplotlib.pyplot as plt
|
127 |
-
# from matplotlib import colors
|
128 |
-
|
129 |
-
def suryolo(image_path) :
|
130 |
-
|
131 |
-
image = Image.open(image_path)
|
132 |
-
L, W = image.size
|
133 |
-
|
134 |
-
|
135 |
-
predicted_mask = predicted_mask_function(image_path)
|
136 |
-
|
137 |
-
colored_mask = np.zeros((W, L, 3), dtype=np.uint8) # 3 channels for RGB
|
138 |
-
|
139 |
-
label_name_to_int = {v: k for k, v in class_labels.items()}
|
140 |
-
|
141 |
-
colors = plt.cm.get_cmap('tab20', len(class_labels))
|
142 |
-
|
143 |
-
bboxes,labels = predict_boxes_labels(image_path)
|
144 |
-
|
145 |
-
for box, label in zip(bboxes, labels): # Assuming labels list corresponds to bboxes
|
146 |
-
xmin, ymin, xmax, ymax = box
|
147 |
-
xmin, ymin, xmax, ymax = int(xmin), int(ymin), int(xmax), int(ymax)
|
148 |
-
|
149 |
-
# Resize predicted mask to match the image dimensions (W = width, L = height)
|
150 |
-
predicted_mask = resize_and_combine_classes(predicted_mask, (W, L))
|
151 |
-
|
152 |
-
# Extract the mask region within the bounding box
|
153 |
-
mask_region = predicted_mask[ymin:ymax, xmin:xmax]
|
154 |
-
|
155 |
-
# Get the corresponding integer index for the label
|
156 |
-
label_index = label_name_to_int[label]
|
157 |
-
|
158 |
-
# Get the corresponding color for the label using the colormap
|
159 |
-
color = colormap_to_rgb(colors, label_index)
|
160 |
-
|
161 |
-
# Apply the color to the regions where mask_region > 0.5
|
162 |
-
colored_mask[ymin:ymax, xmin:xmax][mask_region > 0.5] = color
|
163 |
-
|
164 |
-
blank_color = colormap_to_rgb(colors, 0)
|
165 |
-
colored_mask[(colored_mask == 0).all(axis=-1)] = blank_color
|
166 |
-
|
167 |
-
return mask_to_bboxes(colored_mask,class_labels)
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|