|
--- |
|
library_name: transformers |
|
base_model: openai/clip-vit-large-patch14-336 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: clip-finetuned-csu-p14-336-e3l57-l |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# clip-finetuned-csu-p14-336-e3l57-l |
|
|
|
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2831 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.3448 | 0.0921 | 500 | 1.0839 | |
|
| 0.2708 | 0.1842 | 1000 | 0.8948 | |
|
| 0.177 | 0.2763 | 1500 | 0.8396 | |
|
| 0.1831 | 0.3685 | 2000 | 0.7721 | |
|
| 0.2038 | 0.4606 | 2500 | 0.7446 | |
|
| 0.1309 | 0.5527 | 3000 | 0.7235 | |
|
| 0.1431 | 0.6448 | 3500 | 0.6691 | |
|
| 0.1411 | 0.7369 | 4000 | 0.6437 | |
|
| 0.0849 | 0.8290 | 4500 | 0.4805 | |
|
| 0.1026 | 0.9211 | 5000 | 0.4800 | |
|
| 0.1201 | 1.0133 | 5500 | 0.4810 | |
|
| 0.0757 | 1.1054 | 6000 | 0.4692 | |
|
| 0.0696 | 1.1975 | 6500 | 0.4764 | |
|
| 0.0911 | 1.2896 | 7000 | 0.4601 | |
|
| 0.0806 | 1.3817 | 7500 | 0.4590 | |
|
| 0.088 | 1.4738 | 8000 | 0.4654 | |
|
| 0.0878 | 1.5660 | 8500 | 0.4769 | |
|
| 0.0369 | 1.6581 | 9000 | 0.4684 | |
|
| 0.1034 | 1.7502 | 9500 | 0.4716 | |
|
| 0.0852 | 1.8423 | 10000 | 0.4720 | |
|
| 0.0493 | 1.9344 | 10500 | 0.4714 | |
|
| 0.0603 | 2.0265 | 11000 | 0.4661 | |
|
| 0.0547 | 2.1186 | 11500 | 0.4669 | |
|
| 0.0793 | 2.2108 | 12000 | 0.4664 | |
|
| 0.0415 | 2.3024 | 12500 | 0.2888 | |
|
| 0.0565 | 2.3945 | 13000 | 0.2910 | |
|
| 0.0629 | 2.4866 | 13500 | 0.2889 | |
|
| 0.0584 | 2.5787 | 14000 | 0.2874 | |
|
| 0.0582 | 2.6708 | 14500 | 0.2863 | |
|
| 0.052 | 2.7629 | 15000 | 0.2846 | |
|
| 0.0402 | 2.8550 | 15500 | 0.2835 | |
|
| 0.0518 | 2.9471 | 16000 | 0.2831 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|