|
--- |
|
library_name: transformers |
|
base_model: openai/clip-vit-large-patch14-336 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: clip-finetuned-csu-p14-336-e3l57-l |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# clip-finetuned-csu-p14-336-e3l57-l |
|
|
|
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5312 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.2708 | 0.0921 | 500 | 1.0631 | |
|
| 0.251 | 0.1842 | 1000 | 0.9428 | |
|
| 0.235 | 0.2763 | 1500 | 0.8717 | |
|
| 0.1529 | 0.3685 | 2000 | 0.8318 | |
|
| 0.1781 | 0.4606 | 2500 | 0.7549 | |
|
| 0.1681 | 0.5527 | 3000 | 0.7218 | |
|
| 0.1064 | 0.6448 | 3500 | 0.7048 | |
|
| 0.1357 | 0.7369 | 4000 | 0.6962 | |
|
| 0.1098 | 0.8290 | 4500 | 0.6778 | |
|
| 0.1142 | 0.9211 | 5000 | 0.6657 | |
|
| 0.1113 | 1.0133 | 5500 | 0.6431 | |
|
| 0.0572 | 1.1054 | 6000 | 0.6367 | |
|
| 0.0746 | 1.1975 | 6500 | 0.6261 | |
|
| 0.0494 | 1.2896 | 7000 | 0.6245 | |
|
| 0.0788 | 1.3817 | 7500 | 0.6120 | |
|
| 0.0808 | 1.4738 | 8000 | 0.6011 | |
|
| 0.0536 | 1.5660 | 8500 | 0.5893 | |
|
| 0.0869 | 1.6581 | 9000 | 0.5916 | |
|
| 0.0752 | 1.7502 | 9500 | 0.5707 | |
|
| 0.0577 | 1.8423 | 10000 | 0.5678 | |
|
| 0.0891 | 1.9344 | 10500 | 0.5631 | |
|
| 0.0559 | 2.0265 | 11000 | 0.5548 | |
|
| 0.0385 | 2.1186 | 11500 | 0.5536 | |
|
| 0.0185 | 2.2108 | 12000 | 0.5519 | |
|
| 0.0642 | 2.3029 | 12500 | 0.5505 | |
|
| 0.0456 | 2.3950 | 13000 | 0.5444 | |
|
| 0.0476 | 2.4871 | 13500 | 0.5395 | |
|
| 0.027 | 2.5792 | 14000 | 0.5361 | |
|
| 0.042 | 2.6713 | 14500 | 0.5356 | |
|
| 0.0469 | 2.7634 | 15000 | 0.5343 | |
|
| 0.0438 | 2.8556 | 15500 | 0.5332 | |
|
| 0.0481 | 2.9477 | 16000 | 0.5312 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|