Edit model card

t5-large-korean-P2G

์ด ๋ชจ๋ธ์€ lcw99 / t5-large-korean-text-summary์„ ๊ตญ๋ฆฝ ๊ตญ์–ด์› ์‹ ๋ฌธ ๋ง๋ญ‰์น˜ 50๋งŒ๊ฐœ์˜ ๋ฌธ์žฅ์„ 2021์„ g2pK๋กœ ํ›ˆ๋ จ์‹œ์ผœ G2P๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์›๋ณธ์œผ๋กœ ๋Œ๋ฆฝ๋‹ˆ๋‹ค.
git : https://github.com/taemin6697

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_dir = "kfkas/t5-large-korean-P2G"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)

text = "์„œ๊ทœ์™•๊ตญ ์‹ธ์šฐ๋”” ํƒœ์–‘๊ด‘ยทํ’๋… ๋นจ์ฉ ์ค‘์‹ฌ์ง€ ๋  ๊ปƒ"
inputs = tokenizer.encode(text,return_tensors="pt")
output = model.generate(inputs)
decoded_output = tokenizer.batch(output[0], skip_special_tokens=True)
print(decoded_output)#์„์œ ์™•๊ตญ ์‚ฌ์šฐ๋”” ํƒœ์–‘๊ด‘ยทํ’๋ ฅ ๋ฐœ์ „ ์ค‘์‹ฌ์ง€ ๋  ๊ฒƒ

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: None
  • training_precision: float16

Training results

Framework versions

  • Transformers 4.22.1
  • TensorFlow 2.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
100
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kfkas/t5-large-korean-P2G

Finetunes
1 model

Collection including kfkas/t5-large-korean-P2G