physiotheraphy-E2 / README.md
khalilUoM's picture
Model save
b60c449 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: physiotheraphy-E2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9564032697547684
          - name: F1
            type: f1
            value: 0.9548484656593037
          - name: Precision
            type: precision
            value: 0.9548752935240721
          - name: Recall
            type: recall
            value: 0.9556421648526912

physiotheraphy-E2

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9564

  • F1: 0.9548

  • Precision: 0.9549

  • Recall: 0.9556

  • Loss: 0.2235

  • Classification Report: precision recall f1-score support

         0       0.92      0.95      0.93        57
         1       0.99      0.97      0.98        70
         2       1.00      1.00      1.00        33
         3       0.98      1.00      0.99        43
         4       1.00      1.00      1.00        34
         5       0.94      1.00      0.97        32
         6       0.95      0.94      0.95        65
         7       0.87      0.79      0.83        33
    

    accuracy 0.96 367 macro avg 0.95 0.96 0.95 367

weighted avg 0.96 0.96 0.96 367

  • Confusion Matrix: [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Validation Loss Classification Report Confusion Matrix
0.9195 0.9973 182 0.7248 0.7148 0.7616 0.7319 0.8807 precision recall f1-score support
       0       1.00      0.51      0.67        57
       1       0.98      0.69      0.81        70
       2       0.70      0.79      0.74        33
       3       0.74      0.86      0.80        43
       4       0.45      1.00      0.62        34
       5       0.80      0.50      0.62        32
       6       0.73      0.82      0.77        65
       7       0.70      0.70      0.70        33

accuracy                           0.72       367

macro avg 0.76 0.73 0.71 367 weighted avg 0.79 0.72 0.73 367 | [[0.5087719298245614, 0.017543859649122806, 0.08771929824561403, 0.08771929824561403, 0.07017543859649122, 0.0, 0.17543859649122806, 0.05263157894736842], [0.0, 0.6857142857142857, 0.0, 0.08571428571428572, 0.1, 0.05714285714285714, 0.07142857142857142, 0.0], [0.0, 0.0, 0.7878787878787878, 0.0, 0.21212121212121213, 0.0, 0.0, 0.0], [0.0, 0.0, 0.023255813953488372, 0.8604651162790697, 0.09302325581395349, 0.0, 0.023255813953488372, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.03125, 0.0, 0.46875, 0.5, 0.0, 0.0], [0.0, 0.0, 0.03076923076923077, 0.015384615384615385, 0.03076923076923077, 0.0, 0.8153846153846154, 0.1076923076923077], [0.0, 0.0, 0.06060606060606061, 0.030303030303030304, 0.09090909090909091, 0.0, 0.12121212121212122, 0.696969696969697]] | | 0.8122 | 2.0 | 365 | 0.8365 | 0.8228 | 0.8668 | 0.8177 | 0.5425 | precision recall f1-score support

       0       0.64      0.88      0.74        57
       1       0.86      0.84      0.85        70
       2       0.91      0.94      0.93        33
       3       0.88      0.98      0.92        43
       4       0.92      1.00      0.96        34
       5       1.00      0.44      0.61        32
       6       0.91      0.89      0.90        65
       7       0.83      0.58      0.68        33

accuracy                           0.84       367

macro avg 0.87 0.82 0.82 367 weighted avg 0.85 0.84 0.83 367 | [[0.8771929824561403, 0.03508771929824561, 0.03508771929824561, 0.0, 0.0, 0.0, 0.03508771929824561, 0.017543859649122806], [0.05714285714285714, 0.8428571428571429, 0.0, 0.08571428571428572, 0.0, 0.0, 0.0, 0.014285714285714285], [0.06060606060606061, 0.0, 0.9393939393939394, 0.0, 0.0, 0.0, 0.0, 0.0], [0.023255813953488372, 0.0, 0.0, 0.9767441860465116, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.25, 0.1875, 0.03125, 0.0, 0.09375, 0.4375, 0.0, 0.0], [0.07692307692307693, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8923076923076924, 0.03076923076923077], [0.24242424242424243, 0.06060606060606061, 0.0, 0.0, 0.0, 0.0, 0.12121212121212122, 0.5757575757575758]] | | 0.4541 | 2.9973 | 547 | 0.7929 | 0.7963 | 0.8137 | 0.8177 | 0.7462 | precision recall f1-score support

       0       0.86      0.74      0.79        57
       1       1.00      0.51      0.68        70
       2       0.91      0.91      0.91        33
       3       0.85      0.93      0.89        43
       4       0.71      1.00      0.83        34
       5       0.70      0.94      0.80        32
       6       0.69      0.91      0.78        65
       7       0.80      0.61      0.69        33

accuracy                           0.79       367

macro avg 0.81 0.82 0.80 367 weighted avg 0.83 0.79 0.79 367 | [[0.7368421052631579, 0.0, 0.05263157894736842, 0.0, 0.07017543859649122, 0.03508771929824561, 0.07017543859649122, 0.03508771929824561], [0.02857142857142857, 0.5142857142857142, 0.0, 0.1, 0.05714285714285714, 0.12857142857142856, 0.17142857142857143, 0.0], [0.0, 0.0, 0.9090909090909091, 0.0, 0.06060606060606061, 0.030303030303030304, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9302325581395349, 0.0, 0.0, 0.046511627906976744, 0.023255813953488372], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0625, 0.9375, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.015384615384615385, 0.0, 0.9076923076923077, 0.03076923076923077], [0.06060606060606061, 0.0, 0.0, 0.0, 0.030303030303030304, 0.030303030303030304, 0.2727272727272727, 0.6060606060606061]] | | 0.3103 | 4.0 | 730 | 0.8583 | 0.8611 | 0.8684 | 0.8670 | 0.4772 | precision recall f1-score support

       0       0.96      0.77      0.85        57
       1       0.96      0.74      0.84        70
       2       0.91      0.97      0.94        33
       3       0.93      0.91      0.92        43
       4       1.00      0.97      0.99        34
       5       0.78      0.97      0.86        32
       6       0.73      0.97      0.83        65
       7       0.68      0.64      0.66        33

accuracy                           0.86       367

macro avg 0.87 0.87 0.86 367 weighted avg 0.87 0.86 0.86 367 | [[0.7719298245614035, 0.017543859649122806, 0.0, 0.0, 0.0, 0.017543859649122806, 0.03508771929824561, 0.15789473684210525], [0.0, 0.7428571428571429, 0.02857142857142857, 0.02857142857142857, 0.0, 0.04285714285714286, 0.15714285714285714, 0.0], [0.0, 0.030303030303030304, 0.9696969696969697, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9069767441860465, 0.0, 0.023255813953488372, 0.06976744186046512, 0.0], [0.0, 0.0, 0.0, 0.0, 0.9705882352941176, 0.029411764705882353, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.96875, 0.03125, 0.0], [0.015384615384615385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9692307692307692, 0.015384615384615385], [0.030303030303030304, 0.0, 0.030303030303030304, 0.030303030303030304, 0.0, 0.09090909090909091, 0.18181818181818182, 0.6363636363636364]] | | 0.1391 | 4.9973 | 912 | 0.9046 | 0.9055 | 0.9004 | 0.9151 | 0.4130 | precision recall f1-score support

       0       0.90      0.79      0.84        57
       1       0.96      0.91      0.93        70
       2       0.94      1.00      0.97        33
       3       0.91      1.00      0.96        43
       4       1.00      1.00      1.00        34
       5       0.88      0.94      0.91        32
       6       0.95      0.86      0.90        65
       7       0.66      0.82      0.73        33

accuracy                           0.90       367

macro avg 0.90 0.92 0.91 367 weighted avg 0.91 0.90 0.91 367 | [[0.7894736842105263, 0.0, 0.03508771929824561, 0.0, 0.0, 0.0, 0.0, 0.17543859649122806], [0.0, 0.9142857142857143, 0.0, 0.02857142857142857, 0.0, 0.05714285714285714, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.03125, 0.0, 0.0, 0.0, 0.9375, 0.0, 0.03125], [0.06153846153846154, 0.015384615384615385, 0.0, 0.015384615384615385, 0.0, 0.0, 0.8615384615384616, 0.046153846153846156], [0.030303030303030304, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.8181818181818182]] | | 0.0753 | 6.0 | 1095 | 0.9401 | 0.9367 | 0.9365 | 0.9403 | 0.2873 | precision recall f1-score support

       0       0.93      0.89      0.91        57
       1       0.97      0.97      0.97        70
       2       1.00      0.97      0.98        33
       3       1.00      0.98      0.99        43
       4       0.87      1.00      0.93        34
       5       0.84      0.97      0.90        32
       6       0.95      0.92      0.94        65
       7       0.93      0.82      0.87        33

accuracy                           0.94       367

macro avg 0.94 0.94 0.94 367 weighted avg 0.94 0.94 0.94 367 | [[0.8947368421052632, 0.0, 0.0, 0.0, 0.07017543859649122, 0.017543859649122806, 0.0, 0.017543859649122806], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 0.9696969696969697, 0.0, 0.030303030303030304, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9767441860465116, 0.0, 0.023255813953488372, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.03125, 0.0, 0.0, 0.0, 0.96875, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.015384615384615385, 0.9230769230769231, 0.015384615384615385], [0.030303030303030304, 0.030303030303030304, 0.0, 0.0, 0.0, 0.030303030303030304, 0.09090909090909091, 0.8181818181818182]] | | 0.0178 | 6.9973 | 1277 | 0.9455 | 0.9439 | 0.9535 | 0.9374 | 0.2430 | precision recall f1-score support

       0       0.85      0.96      0.90        57
       1       0.99      0.97      0.98        70
       2       1.00      0.97      0.98        33
       3       0.98      0.98      0.98        43
       4       1.00      1.00      1.00        34
       5       0.97      0.88      0.92        32
       6       0.93      0.95      0.94        65
       7       0.93      0.79      0.85        33

accuracy                           0.95       367

macro avg 0.95 0.94 0.94 367 weighted avg 0.95 0.95 0.95 367 | [[0.9649122807017544, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03508771929824561], [0.0, 0.9714285714285714, 0.0, 0.014285714285714285, 0.0, 0.014285714285714285, 0.0, 0.0], [0.030303030303030304, 0.0, 0.9696969696969697, 0.0, 0.0, 0.0, 0.0, 0.0], [0.023255813953488372, 0.0, 0.0, 0.9767441860465116, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0625, 0.03125, 0.0, 0.0, 0.0, 0.875, 0.03125, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9538461538461539, 0.0], [0.09090909090909091, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12121212121212122, 0.7878787878787878]] | | 0.0037 | 8.0 | 1460 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2235 | precision recall f1-score support

       0       0.92      0.95      0.93        57
       1       0.99      0.97      0.98        70
       2       1.00      1.00      1.00        33
       3       0.98      1.00      0.99        43
       4       1.00      1.00      1.00        34
       5       0.94      1.00      0.97        32
       6       0.95      0.94      0.95        65
       7       0.87      0.79      0.83        33

accuracy                           0.96       367

macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | | 0.0034 | 8.9973 | 1642 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2194 | precision recall f1-score support

       0       0.92      0.95      0.93        57
       1       0.99      0.97      0.98        70
       2       1.00      1.00      1.00        33
       3       0.98      1.00      0.99        43
       4       1.00      1.00      1.00        34
       5       0.94      1.00      0.97        32
       6       0.95      0.94      0.95        65
       7       0.87      0.79      0.83        33

accuracy                           0.96       367

macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | | 0.0027 | 9.9726 | 1820 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2193 | precision recall f1-score support

       0       0.92      0.95      0.93        57
       1       0.99      0.97      0.98        70
       2       1.00      1.00      1.00        33
       3       0.98      1.00      0.99        43
       4       1.00      1.00      1.00        34
       5       0.94      1.00      0.97        32
       6       0.95      0.94      0.95        65
       7       0.87      0.79      0.83        33

accuracy                           0.96       367

macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] |

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1