|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: deberta-v3-small-nslp-forc-subtask1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-small-nslp-forc-subtask1 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2167 |
|
- Accuracy: 0.6649 |
|
- Precision: 0.6642 |
|
- Recall: 0.6649 |
|
- F1-weighted: 0.6595 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:-----------:| |
|
| 0.3563 | 0.77 | 2000 | 0.3333 | 0.5035 | 0.4651 | 0.5035 | 0.4562 | |
|
| 0.2443 | 1.54 | 4000 | 0.2647 | 0.5708 | 0.5598 | 0.5708 | 0.5484 | |
|
| 0.1736 | 2.31 | 6000 | 0.2359 | 0.6152 | 0.6105 | 0.6152 | 0.5969 | |
|
| 0.1404 | 3.08 | 8000 | 0.2207 | 0.6424 | 0.6391 | 0.6424 | 0.6250 | |
|
| 0.1109 | 3.85 | 10000 | 0.2181 | 0.6581 | 0.6534 | 0.6581 | 0.6490 | |
|
| 0.0817 | 4.62 | 12000 | 0.2167 | 0.6649 | 0.6642 | 0.6649 | 0.6595 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.1 |
|
|