whisper-small-zh-tw / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
bb6d94b
|
raw
history blame
2.2 kB
---
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: kimbochen/whisper-small-zh-tw
model-index:
- name: Whisper Small Traditional Chinese
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 zh-TW
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
args: zh-TW
metrics:
- type: wer
value: 32.04202832343535
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Traditional Chinese
This model is a fine-tuned version of [kimbochen/whisper-small-zh-tw](https://huggingface.co/kimbochen/whisper-small-zh-tw) on the mozilla-foundation/common_voice_11_0 zh-TW dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4334
- Wer: 32.0420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1200
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0066 | 2.05 | 400 | 0.3743 | 32.9100 |
| 0.0084 | 5.03 | 800 | 0.3787 | 33.4171 |
| 0.0098 | 8.01 | 1200 | 0.3979 | 33.2481 |
| 0.0019 | 10.06 | 1600 | 0.4084 | 32.3116 |
| 0.0008 | 13.04 | 2000 | 0.4334 | 32.0420 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2