metadata
tags:
- generated_from_trainer
datasets:
- toydata
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-large-ner-hrl-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: toydata
type: toydata
args: SDN
metrics:
- name: Precision
type: precision
value: 0.9132452695465905
- name: Recall
type: recall
value: 0.9205854126679462
- name: F1
type: f1
value: 0.9169006511739053
- name: Accuracy
type: accuracy
value: 0.9784804945824268
xlm-roberta-large-ner-hrl-finetuned-ner
This model is a fine-tuned version of Davlan/xlm-roberta-large-ner-hrl on the toydata dataset. It achieves the following results on the evaluation set:
- Loss: 0.0944
- Precision: 0.9132
- Recall: 0.9206
- F1: 0.9169
- Accuracy: 0.9785
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 408 | 0.0900 | 0.8508 | 0.9303 | 0.8888 | 0.9719 |
0.1087 | 2.0 | 816 | 0.0827 | 0.9043 | 0.9230 | 0.9136 | 0.9783 |
0.0503 | 3.0 | 1224 | 0.0944 | 0.9132 | 0.9206 | 0.9169 | 0.9785 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1