|
--- |
|
library_name: transformers |
|
language: |
|
- ne |
|
license: mit |
|
base_model: kiranpantha/w2v-bert-2.0-nepali |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kiranpantha/OpenSLR54-Balanced-Nepali |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Wave2Vec2-Bert2.0 - Kiran Pantha |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: kiranpantha/OpenSLR54-Balanced-Nepali |
|
type: kiranpantha/OpenSLR54-Balanced-Nepali |
|
args: 'config: ne, split: train,test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.3611633875106929 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Wave2Vec2-Bert2.0 - Kiran Pantha |
|
|
|
This model is a fine-tuned version of [kiranpantha/w2v-bert-2.0-nepali](https://huggingface.co/kiranpantha/w2v-bert-2.0-nepali) on the kiranpantha/OpenSLR54-Balanced-Nepali dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3414 |
|
- Wer: 0.3612 |
|
- Cer: 0.0805 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| 0.4176 | 0.24 | 300 | 0.3260 | 0.3485 | 0.0772 | |
|
| 0.4128 | 0.48 | 600 | 0.3514 | 0.3620 | 0.0810 | |
|
| 0.4161 | 0.72 | 900 | 0.3460 | 0.3618 | 0.0810 | |
|
| 0.3578 | 0.96 | 1200 | 0.3366 | 0.3528 | 0.0804 | |
|
| 0.359 | 1.2 | 1500 | 0.3595 | 0.3577 | 0.0787 | |
|
| 0.3371 | 1.44 | 1800 | 0.3446 | 0.3634 | 0.0808 | |
|
| 0.3309 | 1.6800 | 2100 | 0.3399 | 0.3677 | 0.0818 | |
|
| 0.3441 | 1.92 | 2400 | 0.3414 | 0.3612 | 0.0805 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.0+cu124 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |
|
|