|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- ja |
|
datasets: |
|
- elyza/ELYZA-tasks-100 |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** kittokito |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# Useage |
|
以下のコードを Google Colab で実行してください。 |
|
|
|
``` python |
|
# 必要なライブラリをインストール |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install -U torch |
|
!pip install -U peft |
|
|
|
# 必要なライブラリを読み込み |
|
from unsloth import FastLanguageModel |
|
from peft import PeftModel |
|
import torch |
|
import json |
|
from tqdm import tqdm |
|
|
|
# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。 |
|
model_id = "llm-jp/llm-jp-3-13b" |
|
adapter_id = "kittokito/llm-jp-3-13b-it-202412170007" |
|
|
|
from google.colab import userdata |
|
HF_TOKEN=userdata.get('HF_TOKEN') |
|
|
|
# unslothのFastLanguageModelで元のモデルをロード。 |
|
dtype = None # Noneにしておけば自動で設定 |
|
load_in_4bit = True # 4bit量子化でモデルのパラメーターをダウンロード |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# 元のモデルにLoRAのアダプタを統合。 |
|
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) |
|
|
|
# タスクとなるデータの読み込み。 |
|
# 事前にデータをアップロードしてください。 |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# モデルを用いてタスクの推論。 |
|
|
|
# 推論するためにモデルのモードを変更 |
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
# 結果をjsonlで保存。 |
|
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
|
|
``` |
|
|
|
# Datasets |
|
|
|
## Instruction Tuning |
|
The models have been fine-tuned on the following datasets. |
|
|
|
| **Language** | **Dataset** | **Description** | |
|
|--------------|----------------------------------------------|-------------------------------------------------------------------------------| |
|
| Japanese | [ichikara-instruction-003-001-1.json](http://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) | A manually constructed instruction dataset. | |
|
| | Synthesized data from [Elyza-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) | Synthesized data from [Elyza-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) by using LLM (Mixtral-8x22B). | |