Edit model card

results

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.5590
  • Accuracy: 0.0625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6612 1.0 40 3.9513 0.0
0.8129 2.0 80 3.9721 0.025
0.3799 3.0 120 4.3376 0.0125
0.0946 4.0 160 4.4142 0.0563
0.019 5.0 200 4.5590 0.0625
0.0062 6.0 240 4.9286 0.0437
0.0039 7.0 280 5.0577 0.0437
0.0028 8.0 320 5.1624 0.0437
0.0024 9.0 360 5.2316 0.0437
0.0023 10.0 400 5.2923 0.0437
0.0019 11.0 440 5.3317 0.0375
0.0017 12.0 480 5.3658 0.0375
0.0016 13.0 520 5.3915 0.0375
0.0016 14.0 560 5.4004 0.0375
0.0016 15.0 600 5.4022 0.0375

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kiwinonono/results

Finetuned
(486)
this model

Evaluation results