See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1c2d230e0db4aaf5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1c2d230e0db4aaf5_train_data.json
type:
field_input: transcript
field_instruction: text_description
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kokovova/d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 76GiB
max_steps: 20
micro_batch_size: 2
mlflow_experiment_name: /tmp/1c2d230e0db4aaf5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7
warmup_steps: 10
weight_decay: 0.1
xformers_attention: true
d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7
This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1537
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 20
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9264 | 0.0006 | 1 | 0.9885 |
0.8253 | 0.0012 | 2 | 0.9858 |
1.0454 | 0.0024 | 4 | 0.9375 |
0.8906 | 0.0036 | 6 | 0.7199 |
0.5989 | 0.0048 | 8 | 0.4512 |
0.4002 | 0.0060 | 10 | 0.3309 |
0.2537 | 0.0072 | 12 | 0.2452 |
0.2539 | 0.0083 | 14 | 0.2000 |
0.2893 | 0.0095 | 16 | 0.1798 |
0.0675 | 0.0107 | 18 | 0.1585 |
0.178 | 0.0119 | 20 | 0.1537 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for kokovova/d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7
Base model
Korabbit/llama-2-ko-7b