setfitmkrt / README.md
krish2505's picture
Add SetFit model
3926dcd verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      Please Find Enclosed The Press Release Titled 'Energy Transition Among The
      Top 3 Priorities For 73 Percent Of Companies: Infosys-HFS Research Study'
  - text: >-
      Financial Results For The Quarter Ended June 30, 2023, And Declaration Of
      Interim Dividend
  - text: successfully started
  - text: >-
      Board Meeting Intimation for Notice Of The Board Meeting Dt. August 03,
      2023
  - text: >-
      Board Meeting Intimation for Intimation Regarding Holding Of Meeting Of
      The Board Of Directors: - Un-Audited Financial Results For The Quarter
      Ended June 30, 2023
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.8807339449541285
            name: Accuracy

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • 'Board Meeting Outcome for Board Meeting - Unaudited Financial Results For The Quarter And Nine Months Ended December 31, 2022'
  • 'Board Meeting Outcome for Outcome Of Board Meeting Held On 20Th July, 2023'
  • 'Board Meeting Outcome for Financial Results For The Fourth Quarter (Q4) And Year Ended March 31, 2023 And Recommendation Of Dividend'
6
  • 'Results - Financial Results For Quarter And Nine Months Ended December 31, 2022'
  • "Updated Independent Auditor'S Report On The Consolidated Financial Statements As At And For The Year Ended March 31, 2023, Prepared Under Indian Accounting Standards, Issued On April 13, 2023"
  • 'Financial Results For The Quarter And Nine Month Period Ended December 31, 2022 And Declaration Of Third Interim Dividend'
5
  • 'Regulation 30 Of The SEBI (Listing Obligations And Disclosure Requirements) Regulations 2015: Disclosure Of Change in Accounting Policies'
  • 'Regulation 30 Of The SEBI (Listing Obligations And Disclosure Requirements) Regulations 2015: Disclosure Of Appointment of Key Managerial Personnel'
  • 'Regulation 30 Of The SEBI (Listing Obligations And Disclosure Requirements) Regulations 2015: Disclosure Of Change in Listing Status'
3
  • 'Earnings Call For Q1 And Half-Yearly Financial Results - FY 2023'
  • 'Earnings Call Of ABC Holdings - Emerging Markets Perspective'
  • 'Audio / Video Recording - Earnings Call - Technology and Innovation Highlights'
0
  • 'Transcripts of Town Hall Meeting with Stakeholders'
  • 'Clarification on Market Rumors Regarding Product Recall'
  • 'Media Release By Reliance Jio Infocomm Limited'
1
  • "Order Passed By The Hon'Ble National Company Law Tribunal, Mumbai Bench, Sanctioning The Scheme Of Arrangement Between Reliance Projects & Property Management Services Limited And Its Shareholders And Creditors & Reliance Industries Limited And Its Shareholders And Creditors ('Scheme') - Further Update"
  • 'Update To The Disclosure Dated August 23, 2023 On Investment By Qatar Holding LLC In Reliance Retail Ventures Limited, A Subsidiary Of The Company'
  • 'Announcement under Regulation 30 (LODR)-Updates on Acquisition'
7
  • 'Cloud For Organizational Growth And Transformation Is Three Times More Important Than Cloud For Cost Optimization: Infosys Research'
  • 'Infosys Rated A Leader In Multicloud Managed Services Providers And Cloud Migration And Managed Service Partners By Independent Research Firm'
  • 'Infosys Collaborates with Leading Universities for Research and Development'
4
  • 'In accordance with SEBI (LODR) regulations an intimation has been officially conveyed regarding the record date for Shareholders and ESOP Holders of NNL following the approval of the Merger Scheme by the National Company Law Tribunal Chennai Bench.'
  • 'An official announcement under SEBI (LODR) has been made declaring the notification of the record date for ESOP Holders and Shareholders post the successful completion of the Amalgamation between XYZ Systems Ltd and our Company.'
  • 'Grant Of Stock Options Under The Employee Stock Option Scheme Of The Bank (ESOP Scheme).'
8
  • 'Announcement under Regulation 30 (LODR)-Resignation of Head of Marketing'
  • 'Resignation Of Shri Rajesh B. Ambani From The Board Of The Company - Disclosure Dated September 5'
  • 'Announcement under Regulation 30 (LODR)-Resignation of Chief Operating Officer (COO)'

Evaluation

Metrics

Label Accuracy
all 0.8807

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("krish2505/setfitmkrt")
# Run inference
preds = model("successfully started")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 15.0265 70
Label Training Sample Count
0 142
1 130
2 310
3 61
4 42
5 61
6 191
7 6
8 38

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0016 1 0.1833 -
0.0814 50 0.125 -
0.1629 100 0.0628 -
0.2443 150 0.0361 -
0.3257 200 0.0333 -
0.4072 250 0.0116 -
0.4886 300 0.0253 -
0.5700 350 0.0231 -
0.6515 400 0.0037 -
0.7329 450 0.0144 -
0.8143 500 0.0095 -
0.8958 550 0.0161 -
0.9772 600 0.0104 -
1.0586 650 0.0064 -
1.1401 700 0.0018 -
1.2215 750 0.0107 -
1.3029 800 0.0035 -
1.3844 850 0.0056 -
1.4658 900 0.0142 -
1.5472 950 0.014 -
1.6287 1000 0.0109 -
1.7101 1050 0.0252 -
1.7915 1100 0.0093 -
1.8730 1150 0.0048 -
1.9544 1200 0.0063 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.2.2
  • Transformers: 4.36.2
  • PyTorch: 2.0.0
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}