kshitijkutumbe commited on
Commit
5911a83
1 Parent(s): 698c6ff

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Proof Reader
14
+ - text: product owner
15
+ - text: chief community officer
16
+ - text: planner
17
+ - text: information technology administrator
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 4 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:---------------------------------------------------------------------------------------------------------------|
65
+ | 3 | <ul><li>'academic head'</li><li>'admin director'</li><li>'admin head'</li></ul> |
66
+ | 4 | <ul><li>'account director'</li><li>'area vice president'</li><li>'assistant chief executive officer'</li></ul> |
67
+ | 2 | <ul><li>'account manager'</li><li>'admin'</li><li>'admin officer'</li></ul> |
68
+ | 1 | <ul><li>'accountant'</li><li>'administrator'</li><li>'adviser'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | Accuracy |
74
+ |:--------|:---------|
75
+ | **all** | 1.0 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("setfit_model_id")
94
+ # Run inference
95
+ preds = model("planner")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:-------|:----|
127
+ | Word count | 1 | 2.1124 | 6 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 1 | 380 |
132
+ | 2 | 107 |
133
+ | 3 | 67 |
134
+ | 4 | 193 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (16, 16)
138
+ - num_epochs: (3, 3)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 20
142
+ - body_learning_rate: (2e-05, 2e-05)
143
+ - head_learning_rate: 2e-05
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:------:|:----:|:-------------:|:---------------:|
157
+ | 0.0005 | 1 | 0.2621 | - |
158
+ | 0.0268 | 50 | 0.2631 | - |
159
+ | 0.0535 | 100 | 0.2043 | - |
160
+ | 0.0803 | 150 | 0.1561 | - |
161
+ | 0.1071 | 200 | 0.203 | - |
162
+ | 0.1338 | 250 | 0.1823 | - |
163
+ | 0.1606 | 300 | 0.1082 | - |
164
+ | 0.1874 | 350 | 0.0702 | - |
165
+ | 0.2141 | 400 | 0.1159 | - |
166
+ | 0.2409 | 450 | 0.0532 | - |
167
+ | 0.2677 | 500 | 0.0767 | - |
168
+ | 0.2944 | 550 | 0.0965 | - |
169
+ | 0.3212 | 600 | 0.0479 | - |
170
+ | 0.3480 | 650 | 0.0353 | - |
171
+ | 0.3747 | 700 | 0.0235 | - |
172
+ | 0.4015 | 750 | 0.0028 | - |
173
+ | 0.4283 | 800 | 0.004 | - |
174
+ | 0.4550 | 850 | 0.0908 | - |
175
+ | 0.4818 | 900 | 0.0078 | - |
176
+ | 0.5086 | 950 | 0.0149 | - |
177
+ | 0.5353 | 1000 | 0.0841 | - |
178
+ | 0.5621 | 1050 | 0.0141 | - |
179
+ | 0.5889 | 1100 | 0.0328 | - |
180
+ | 0.6156 | 1150 | 0.0031 | - |
181
+ | 0.6424 | 1200 | 0.0027 | - |
182
+ | 0.6692 | 1250 | 0.0205 | - |
183
+ | 0.6959 | 1300 | 0.0584 | - |
184
+ | 0.7227 | 1350 | 0.002 | - |
185
+ | 0.7495 | 1400 | 0.0009 | - |
186
+ | 0.7762 | 1450 | 0.0018 | - |
187
+ | 0.8030 | 1500 | 0.001 | - |
188
+ | 0.8298 | 1550 | 0.0004 | - |
189
+ | 0.8565 | 1600 | 0.0008 | - |
190
+ | 0.8833 | 1650 | 0.0006 | - |
191
+ | 0.9101 | 1700 | 0.0021 | - |
192
+ | 0.9368 | 1750 | 0.009 | - |
193
+ | 0.9636 | 1800 | 0.0031 | - |
194
+ | 0.9904 | 1850 | 0.0024 | - |
195
+ | 1.0171 | 1900 | 0.0327 | - |
196
+ | 1.0439 | 1950 | 0.0257 | - |
197
+ | 1.0707 | 2000 | 0.0006 | - |
198
+ | 1.0974 | 2050 | 0.0009 | - |
199
+ | 1.1242 | 2100 | 0.0006 | - |
200
+ | 1.1510 | 2150 | 0.0004 | - |
201
+ | 1.1777 | 2200 | 0.0011 | - |
202
+ | 1.2045 | 2250 | 0.0004 | - |
203
+ | 1.2313 | 2300 | 0.0012 | - |
204
+ | 1.2580 | 2350 | 0.0005 | - |
205
+ | 1.2848 | 2400 | 0.0013 | - |
206
+ | 1.3116 | 2450 | 0.0007 | - |
207
+ | 1.3383 | 2500 | 0.0002 | - |
208
+ | 1.3651 | 2550 | 0.0005 | - |
209
+ | 1.3919 | 2600 | 0.0006 | - |
210
+ | 1.4186 | 2650 | 0.0006 | - |
211
+ | 1.4454 | 2700 | 0.0004 | - |
212
+ | 1.4722 | 2750 | 0.0004 | - |
213
+ | 1.4989 | 2800 | 0.0008 | - |
214
+ | 1.5257 | 2850 | 0.0003 | - |
215
+ | 1.5525 | 2900 | 0.0012 | - |
216
+ | 1.5792 | 2950 | 0.0006 | - |
217
+ | 1.6060 | 3000 | 0.0003 | - |
218
+ | 1.6328 | 3050 | 0.0002 | - |
219
+ | 1.6595 | 3100 | 0.0026 | - |
220
+ | 1.6863 | 3150 | 0.0003 | - |
221
+ | 1.7131 | 3200 | 0.0003 | - |
222
+ | 1.7398 | 3250 | 0.0003 | - |
223
+ | 1.7666 | 3300 | 0.0003 | - |
224
+ | 1.7934 | 3350 | 0.0003 | - |
225
+ | 1.8201 | 3400 | 0.0004 | - |
226
+ | 1.8469 | 3450 | 0.0003 | - |
227
+ | 1.8737 | 3500 | 0.0005 | - |
228
+ | 1.9004 | 3550 | 0.0003 | - |
229
+ | 1.9272 | 3600 | 0.0003 | - |
230
+ | 1.9540 | 3650 | 0.0002 | - |
231
+ | 1.9807 | 3700 | 0.0003 | - |
232
+ | 2.0075 | 3750 | 0.0003 | - |
233
+ | 2.0343 | 3800 | 0.0003 | - |
234
+ | 2.0610 | 3850 | 0.0002 | - |
235
+ | 2.0878 | 3900 | 0.0004 | - |
236
+ | 2.1146 | 3950 | 0.0003 | - |
237
+ | 2.1413 | 4000 | 0.0003 | - |
238
+ | 2.1681 | 4050 | 0.0002 | - |
239
+ | 2.1949 | 4100 | 0.0541 | - |
240
+ | 2.2216 | 4150 | 0.0002 | - |
241
+ | 2.2484 | 4200 | 0.0003 | - |
242
+ | 2.2752 | 4250 | 0.0582 | - |
243
+ | 2.3019 | 4300 | 0.0003 | - |
244
+ | 2.3287 | 4350 | 0.0002 | - |
245
+ | 2.3555 | 4400 | 0.0003 | - |
246
+ | 2.3822 | 4450 | 0.0005 | - |
247
+ | 2.4090 | 4500 | 0.0004 | - |
248
+ | 2.4358 | 4550 | 0.0003 | - |
249
+ | 2.4625 | 4600 | 0.0003 | - |
250
+ | 2.4893 | 4650 | 0.0002 | - |
251
+ | 2.5161 | 4700 | 0.0002 | - |
252
+ | 2.5428 | 4750 | 0.0003 | - |
253
+ | 2.5696 | 4800 | 0.0008 | - |
254
+ | 2.5964 | 4850 | 0.0002 | - |
255
+ | 2.6231 | 4900 | 0.0002 | - |
256
+ | 2.6499 | 4950 | 0.0005 | - |
257
+ | 2.6767 | 5000 | 0.0003 | - |
258
+ | 2.7034 | 5050 | 0.0002 | - |
259
+ | 2.7302 | 5100 | 0.0004 | - |
260
+ | 2.7570 | 5150 | 0.0002 | - |
261
+ | 2.7837 | 5200 | 0.0005 | - |
262
+ | 2.8105 | 5250 | 0.0004 | - |
263
+ | 2.8373 | 5300 | 0.0394 | - |
264
+ | 2.8640 | 5350 | 0.0002 | - |
265
+ | 2.8908 | 5400 | 0.0399 | - |
266
+ | 2.9176 | 5450 | 0.0002 | - |
267
+ | 2.9443 | 5500 | 0.0002 | - |
268
+ | 2.9711 | 5550 | 0.0002 | - |
269
+ | 2.9979 | 5600 | 0.0002 | - |
270
+
271
+ ### Framework Versions
272
+ - Python: 3.10.12
273
+ - SetFit: 1.0.3
274
+ - Sentence Transformers: 3.0.1
275
+ - Transformers: 4.39.0
276
+ - PyTorch: 2.3.1+cu121
277
+ - Datasets: 2.20.0
278
+ - Tokenizers: 0.15.2
279
+
280
+ ## Citation
281
+
282
+ ### BibTeX
283
+ ```bibtex
284
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
285
+ doi = {10.48550/ARXIV.2209.11055},
286
+ url = {https://arxiv.org/abs/2209.11055},
287
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
288
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
289
+ title = {Efficient Few-Shot Learning Without Prompts},
290
+ publisher = {arXiv},
291
+ year = {2022},
292
+ copyright = {Creative Commons Attribution 4.0 International}
293
+ }
294
+ ```
295
+
296
+ <!--
297
+ ## Glossary
298
+
299
+ *Clearly define terms in order to be accessible across audiences.*
300
+ -->
301
+
302
+ <!--
303
+ ## Model Card Authors
304
+
305
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
306
+ -->
307
+
308
+ <!--
309
+ ## Model Card Contact
310
+
311
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
312
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./job_level_model",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:625b7beec3844af1c086f2b5ecea50588bb74b1d51198fe78652b943233565a0
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d57471ef8fd6c900025f1d708edb88f4e223244c9d1fc81a35595cb2d223f265
3
+ size 25479
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff