Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
3
  • 'academic head'
  • 'admin director'
  • 'admin head'
4
  • 'account director'
  • 'area vice president'
  • 'assistant chief executive officer'
2
  • 'account manager'
  • 'admin'
  • 'admin officer'
1
  • 'accountant'
  • 'administrator'
  • 'adviser'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("planner")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 2.1124 6
Label Training Sample Count
1 380
2 107
3 67
4 193

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0005 1 0.2621 -
0.0268 50 0.2631 -
0.0535 100 0.2043 -
0.0803 150 0.1561 -
0.1071 200 0.203 -
0.1338 250 0.1823 -
0.1606 300 0.1082 -
0.1874 350 0.0702 -
0.2141 400 0.1159 -
0.2409 450 0.0532 -
0.2677 500 0.0767 -
0.2944 550 0.0965 -
0.3212 600 0.0479 -
0.3480 650 0.0353 -
0.3747 700 0.0235 -
0.4015 750 0.0028 -
0.4283 800 0.004 -
0.4550 850 0.0908 -
0.4818 900 0.0078 -
0.5086 950 0.0149 -
0.5353 1000 0.0841 -
0.5621 1050 0.0141 -
0.5889 1100 0.0328 -
0.6156 1150 0.0031 -
0.6424 1200 0.0027 -
0.6692 1250 0.0205 -
0.6959 1300 0.0584 -
0.7227 1350 0.002 -
0.7495 1400 0.0009 -
0.7762 1450 0.0018 -
0.8030 1500 0.001 -
0.8298 1550 0.0004 -
0.8565 1600 0.0008 -
0.8833 1650 0.0006 -
0.9101 1700 0.0021 -
0.9368 1750 0.009 -
0.9636 1800 0.0031 -
0.9904 1850 0.0024 -
1.0171 1900 0.0327 -
1.0439 1950 0.0257 -
1.0707 2000 0.0006 -
1.0974 2050 0.0009 -
1.1242 2100 0.0006 -
1.1510 2150 0.0004 -
1.1777 2200 0.0011 -
1.2045 2250 0.0004 -
1.2313 2300 0.0012 -
1.2580 2350 0.0005 -
1.2848 2400 0.0013 -
1.3116 2450 0.0007 -
1.3383 2500 0.0002 -
1.3651 2550 0.0005 -
1.3919 2600 0.0006 -
1.4186 2650 0.0006 -
1.4454 2700 0.0004 -
1.4722 2750 0.0004 -
1.4989 2800 0.0008 -
1.5257 2850 0.0003 -
1.5525 2900 0.0012 -
1.5792 2950 0.0006 -
1.6060 3000 0.0003 -
1.6328 3050 0.0002 -
1.6595 3100 0.0026 -
1.6863 3150 0.0003 -
1.7131 3200 0.0003 -
1.7398 3250 0.0003 -
1.7666 3300 0.0003 -
1.7934 3350 0.0003 -
1.8201 3400 0.0004 -
1.8469 3450 0.0003 -
1.8737 3500 0.0005 -
1.9004 3550 0.0003 -
1.9272 3600 0.0003 -
1.9540 3650 0.0002 -
1.9807 3700 0.0003 -
2.0075 3750 0.0003 -
2.0343 3800 0.0003 -
2.0610 3850 0.0002 -
2.0878 3900 0.0004 -
2.1146 3950 0.0003 -
2.1413 4000 0.0003 -
2.1681 4050 0.0002 -
2.1949 4100 0.0541 -
2.2216 4150 0.0002 -
2.2484 4200 0.0003 -
2.2752 4250 0.0582 -
2.3019 4300 0.0003 -
2.3287 4350 0.0002 -
2.3555 4400 0.0003 -
2.3822 4450 0.0005 -
2.4090 4500 0.0004 -
2.4358 4550 0.0003 -
2.4625 4600 0.0003 -
2.4893 4650 0.0002 -
2.5161 4700 0.0002 -
2.5428 4750 0.0003 -
2.5696 4800 0.0008 -
2.5964 4850 0.0002 -
2.6231 4900 0.0002 -
2.6499 4950 0.0005 -
2.6767 5000 0.0003 -
2.7034 5050 0.0002 -
2.7302 5100 0.0004 -
2.7570 5150 0.0002 -
2.7837 5200 0.0005 -
2.8105 5250 0.0004 -
2.8373 5300 0.0394 -
2.8640 5350 0.0002 -
2.8908 5400 0.0399 -
2.9176 5450 0.0002 -
2.9443 5500 0.0002 -
2.9711 5550 0.0002 -
2.9979 5600 0.0002 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.3.1+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kshitijkutumbe/job_level_model

Finetuned
(246)
this model

Evaluation results