metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Proof Reader
- text: product owner
- text: chief community officer
- text: planner
- text: information technology administrator
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
3 |
|
4 |
|
2 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("planner")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 2.1124 | 6 |
Label | Training Sample Count |
---|---|
1 | 380 |
2 | 107 |
3 | 67 |
4 | 193 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.2621 | - |
0.0268 | 50 | 0.2631 | - |
0.0535 | 100 | 0.2043 | - |
0.0803 | 150 | 0.1561 | - |
0.1071 | 200 | 0.203 | - |
0.1338 | 250 | 0.1823 | - |
0.1606 | 300 | 0.1082 | - |
0.1874 | 350 | 0.0702 | - |
0.2141 | 400 | 0.1159 | - |
0.2409 | 450 | 0.0532 | - |
0.2677 | 500 | 0.0767 | - |
0.2944 | 550 | 0.0965 | - |
0.3212 | 600 | 0.0479 | - |
0.3480 | 650 | 0.0353 | - |
0.3747 | 700 | 0.0235 | - |
0.4015 | 750 | 0.0028 | - |
0.4283 | 800 | 0.004 | - |
0.4550 | 850 | 0.0908 | - |
0.4818 | 900 | 0.0078 | - |
0.5086 | 950 | 0.0149 | - |
0.5353 | 1000 | 0.0841 | - |
0.5621 | 1050 | 0.0141 | - |
0.5889 | 1100 | 0.0328 | - |
0.6156 | 1150 | 0.0031 | - |
0.6424 | 1200 | 0.0027 | - |
0.6692 | 1250 | 0.0205 | - |
0.6959 | 1300 | 0.0584 | - |
0.7227 | 1350 | 0.002 | - |
0.7495 | 1400 | 0.0009 | - |
0.7762 | 1450 | 0.0018 | - |
0.8030 | 1500 | 0.001 | - |
0.8298 | 1550 | 0.0004 | - |
0.8565 | 1600 | 0.0008 | - |
0.8833 | 1650 | 0.0006 | - |
0.9101 | 1700 | 0.0021 | - |
0.9368 | 1750 | 0.009 | - |
0.9636 | 1800 | 0.0031 | - |
0.9904 | 1850 | 0.0024 | - |
1.0171 | 1900 | 0.0327 | - |
1.0439 | 1950 | 0.0257 | - |
1.0707 | 2000 | 0.0006 | - |
1.0974 | 2050 | 0.0009 | - |
1.1242 | 2100 | 0.0006 | - |
1.1510 | 2150 | 0.0004 | - |
1.1777 | 2200 | 0.0011 | - |
1.2045 | 2250 | 0.0004 | - |
1.2313 | 2300 | 0.0012 | - |
1.2580 | 2350 | 0.0005 | - |
1.2848 | 2400 | 0.0013 | - |
1.3116 | 2450 | 0.0007 | - |
1.3383 | 2500 | 0.0002 | - |
1.3651 | 2550 | 0.0005 | - |
1.3919 | 2600 | 0.0006 | - |
1.4186 | 2650 | 0.0006 | - |
1.4454 | 2700 | 0.0004 | - |
1.4722 | 2750 | 0.0004 | - |
1.4989 | 2800 | 0.0008 | - |
1.5257 | 2850 | 0.0003 | - |
1.5525 | 2900 | 0.0012 | - |
1.5792 | 2950 | 0.0006 | - |
1.6060 | 3000 | 0.0003 | - |
1.6328 | 3050 | 0.0002 | - |
1.6595 | 3100 | 0.0026 | - |
1.6863 | 3150 | 0.0003 | - |
1.7131 | 3200 | 0.0003 | - |
1.7398 | 3250 | 0.0003 | - |
1.7666 | 3300 | 0.0003 | - |
1.7934 | 3350 | 0.0003 | - |
1.8201 | 3400 | 0.0004 | - |
1.8469 | 3450 | 0.0003 | - |
1.8737 | 3500 | 0.0005 | - |
1.9004 | 3550 | 0.0003 | - |
1.9272 | 3600 | 0.0003 | - |
1.9540 | 3650 | 0.0002 | - |
1.9807 | 3700 | 0.0003 | - |
2.0075 | 3750 | 0.0003 | - |
2.0343 | 3800 | 0.0003 | - |
2.0610 | 3850 | 0.0002 | - |
2.0878 | 3900 | 0.0004 | - |
2.1146 | 3950 | 0.0003 | - |
2.1413 | 4000 | 0.0003 | - |
2.1681 | 4050 | 0.0002 | - |
2.1949 | 4100 | 0.0541 | - |
2.2216 | 4150 | 0.0002 | - |
2.2484 | 4200 | 0.0003 | - |
2.2752 | 4250 | 0.0582 | - |
2.3019 | 4300 | 0.0003 | - |
2.3287 | 4350 | 0.0002 | - |
2.3555 | 4400 | 0.0003 | - |
2.3822 | 4450 | 0.0005 | - |
2.4090 | 4500 | 0.0004 | - |
2.4358 | 4550 | 0.0003 | - |
2.4625 | 4600 | 0.0003 | - |
2.4893 | 4650 | 0.0002 | - |
2.5161 | 4700 | 0.0002 | - |
2.5428 | 4750 | 0.0003 | - |
2.5696 | 4800 | 0.0008 | - |
2.5964 | 4850 | 0.0002 | - |
2.6231 | 4900 | 0.0002 | - |
2.6499 | 4950 | 0.0005 | - |
2.6767 | 5000 | 0.0003 | - |
2.7034 | 5050 | 0.0002 | - |
2.7302 | 5100 | 0.0004 | - |
2.7570 | 5150 | 0.0002 | - |
2.7837 | 5200 | 0.0005 | - |
2.8105 | 5250 | 0.0004 | - |
2.8373 | 5300 | 0.0394 | - |
2.8640 | 5350 | 0.0002 | - |
2.8908 | 5400 | 0.0399 | - |
2.9176 | 5450 | 0.0002 | - |
2.9443 | 5500 | 0.0002 | - |
2.9711 | 5550 | 0.0002 | - |
2.9979 | 5600 | 0.0002 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}