|
--- |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Proof Reader |
|
- text: product owner |
|
- text: chief community officer |
|
- text: planner |
|
- text: information technology administrator |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------| |
|
| 3 | <ul><li>'academic head'</li><li>'admin director'</li><li>'admin head'</li></ul> | |
|
| 4 | <ul><li>'account director'</li><li>'area vice president'</li><li>'assistant chief executive officer'</li></ul> | |
|
| 2 | <ul><li>'account manager'</li><li>'admin'</li><li>'admin officer'</li></ul> | |
|
| 1 | <ul><li>'accountant'</li><li>'administrator'</li><li>'adviser'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("planner") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 2.1124 | 6 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 1 | 380 | |
|
| 2 | 107 | |
|
| 3 | 67 | |
|
| 4 | 193 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (3, 3) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0005 | 1 | 0.2621 | - | |
|
| 0.0268 | 50 | 0.2631 | - | |
|
| 0.0535 | 100 | 0.2043 | - | |
|
| 0.0803 | 150 | 0.1561 | - | |
|
| 0.1071 | 200 | 0.203 | - | |
|
| 0.1338 | 250 | 0.1823 | - | |
|
| 0.1606 | 300 | 0.1082 | - | |
|
| 0.1874 | 350 | 0.0702 | - | |
|
| 0.2141 | 400 | 0.1159 | - | |
|
| 0.2409 | 450 | 0.0532 | - | |
|
| 0.2677 | 500 | 0.0767 | - | |
|
| 0.2944 | 550 | 0.0965 | - | |
|
| 0.3212 | 600 | 0.0479 | - | |
|
| 0.3480 | 650 | 0.0353 | - | |
|
| 0.3747 | 700 | 0.0235 | - | |
|
| 0.4015 | 750 | 0.0028 | - | |
|
| 0.4283 | 800 | 0.004 | - | |
|
| 0.4550 | 850 | 0.0908 | - | |
|
| 0.4818 | 900 | 0.0078 | - | |
|
| 0.5086 | 950 | 0.0149 | - | |
|
| 0.5353 | 1000 | 0.0841 | - | |
|
| 0.5621 | 1050 | 0.0141 | - | |
|
| 0.5889 | 1100 | 0.0328 | - | |
|
| 0.6156 | 1150 | 0.0031 | - | |
|
| 0.6424 | 1200 | 0.0027 | - | |
|
| 0.6692 | 1250 | 0.0205 | - | |
|
| 0.6959 | 1300 | 0.0584 | - | |
|
| 0.7227 | 1350 | 0.002 | - | |
|
| 0.7495 | 1400 | 0.0009 | - | |
|
| 0.7762 | 1450 | 0.0018 | - | |
|
| 0.8030 | 1500 | 0.001 | - | |
|
| 0.8298 | 1550 | 0.0004 | - | |
|
| 0.8565 | 1600 | 0.0008 | - | |
|
| 0.8833 | 1650 | 0.0006 | - | |
|
| 0.9101 | 1700 | 0.0021 | - | |
|
| 0.9368 | 1750 | 0.009 | - | |
|
| 0.9636 | 1800 | 0.0031 | - | |
|
| 0.9904 | 1850 | 0.0024 | - | |
|
| 1.0171 | 1900 | 0.0327 | - | |
|
| 1.0439 | 1950 | 0.0257 | - | |
|
| 1.0707 | 2000 | 0.0006 | - | |
|
| 1.0974 | 2050 | 0.0009 | - | |
|
| 1.1242 | 2100 | 0.0006 | - | |
|
| 1.1510 | 2150 | 0.0004 | - | |
|
| 1.1777 | 2200 | 0.0011 | - | |
|
| 1.2045 | 2250 | 0.0004 | - | |
|
| 1.2313 | 2300 | 0.0012 | - | |
|
| 1.2580 | 2350 | 0.0005 | - | |
|
| 1.2848 | 2400 | 0.0013 | - | |
|
| 1.3116 | 2450 | 0.0007 | - | |
|
| 1.3383 | 2500 | 0.0002 | - | |
|
| 1.3651 | 2550 | 0.0005 | - | |
|
| 1.3919 | 2600 | 0.0006 | - | |
|
| 1.4186 | 2650 | 0.0006 | - | |
|
| 1.4454 | 2700 | 0.0004 | - | |
|
| 1.4722 | 2750 | 0.0004 | - | |
|
| 1.4989 | 2800 | 0.0008 | - | |
|
| 1.5257 | 2850 | 0.0003 | - | |
|
| 1.5525 | 2900 | 0.0012 | - | |
|
| 1.5792 | 2950 | 0.0006 | - | |
|
| 1.6060 | 3000 | 0.0003 | - | |
|
| 1.6328 | 3050 | 0.0002 | - | |
|
| 1.6595 | 3100 | 0.0026 | - | |
|
| 1.6863 | 3150 | 0.0003 | - | |
|
| 1.7131 | 3200 | 0.0003 | - | |
|
| 1.7398 | 3250 | 0.0003 | - | |
|
| 1.7666 | 3300 | 0.0003 | - | |
|
| 1.7934 | 3350 | 0.0003 | - | |
|
| 1.8201 | 3400 | 0.0004 | - | |
|
| 1.8469 | 3450 | 0.0003 | - | |
|
| 1.8737 | 3500 | 0.0005 | - | |
|
| 1.9004 | 3550 | 0.0003 | - | |
|
| 1.9272 | 3600 | 0.0003 | - | |
|
| 1.9540 | 3650 | 0.0002 | - | |
|
| 1.9807 | 3700 | 0.0003 | - | |
|
| 2.0075 | 3750 | 0.0003 | - | |
|
| 2.0343 | 3800 | 0.0003 | - | |
|
| 2.0610 | 3850 | 0.0002 | - | |
|
| 2.0878 | 3900 | 0.0004 | - | |
|
| 2.1146 | 3950 | 0.0003 | - | |
|
| 2.1413 | 4000 | 0.0003 | - | |
|
| 2.1681 | 4050 | 0.0002 | - | |
|
| 2.1949 | 4100 | 0.0541 | - | |
|
| 2.2216 | 4150 | 0.0002 | - | |
|
| 2.2484 | 4200 | 0.0003 | - | |
|
| 2.2752 | 4250 | 0.0582 | - | |
|
| 2.3019 | 4300 | 0.0003 | - | |
|
| 2.3287 | 4350 | 0.0002 | - | |
|
| 2.3555 | 4400 | 0.0003 | - | |
|
| 2.3822 | 4450 | 0.0005 | - | |
|
| 2.4090 | 4500 | 0.0004 | - | |
|
| 2.4358 | 4550 | 0.0003 | - | |
|
| 2.4625 | 4600 | 0.0003 | - | |
|
| 2.4893 | 4650 | 0.0002 | - | |
|
| 2.5161 | 4700 | 0.0002 | - | |
|
| 2.5428 | 4750 | 0.0003 | - | |
|
| 2.5696 | 4800 | 0.0008 | - | |
|
| 2.5964 | 4850 | 0.0002 | - | |
|
| 2.6231 | 4900 | 0.0002 | - | |
|
| 2.6499 | 4950 | 0.0005 | - | |
|
| 2.6767 | 5000 | 0.0003 | - | |
|
| 2.7034 | 5050 | 0.0002 | - | |
|
| 2.7302 | 5100 | 0.0004 | - | |
|
| 2.7570 | 5150 | 0.0002 | - | |
|
| 2.7837 | 5200 | 0.0005 | - | |
|
| 2.8105 | 5250 | 0.0004 | - | |
|
| 2.8373 | 5300 | 0.0394 | - | |
|
| 2.8640 | 5350 | 0.0002 | - | |
|
| 2.8908 | 5400 | 0.0399 | - | |
|
| 2.9176 | 5450 | 0.0002 | - | |
|
| 2.9443 | 5500 | 0.0002 | - | |
|
| 2.9711 | 5550 | 0.0002 | - | |
|
| 2.9979 | 5600 | 0.0002 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.3.1+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |