File size: 2,877 Bytes
0b30ef9 3675d02 2b025fe 99ea7c3 0b30ef9 7d672d7 0b30ef9 acc0602 0b30ef9 7d672d7 0b30ef9 1af0d58 0b30ef9 7d672d7 0b30ef9 1af0d58 0b30ef9 7d672d7 0b30ef9 1af0d58 0b30ef9 7d672d7 0b30ef9 7d672d7 0b30ef9 acc0602 0b30ef9 7d672d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: "[*]CC[*]"
sentences:
- "[*]COC[*]"
- "[*]CC(C)C[*]"
---
# kuelumbus/polyBERT
This is polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. polyBERT maps PSMILES strings to 600 dimensional dense fingerprints. The fingerprints numerically represent polymer chemical structures.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"]
polyBERT = SentenceTransformer('kuelumbus/polyBERT')
embeddings = polyBERT.encode(psmiles_strings)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('kuelumbus/polyBERT')
polyBERT = AutoModel.from_pretrained('kuelumbus/polyBERT')
# Tokenize sentences
encoded_input = tokenizer(psmiles_strings, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = polyBERT(**encoded_input)
# Perform pooling. In this case, mean pooling.
fingerprints = mean_pooling(model_output, encoded_input['attention_mask'])
print("Fingerprints:")
print(fingerprints)
```
## Evaluation Results
See https://github.com/Ramprasad-Group/polyBERT and paper on arXiv.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 600, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
t.b.d. |