File size: 3,198 Bytes
0b30ef9
 
 
 
 
 
 
3675d02
dcf7d28
2b025fe
dcf7d28
 
 
 
 
 
 
0b30ef9
 
 
 
d8e6b20
0b30ef9
 
 
 
 
 
 
 
acc0602
0b30ef9
 
 
 
 
 
7d672d7
0b30ef9
1af0d58
 
0b30ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d672d7
0b30ef9
 
 
1af0d58
0b30ef9
 
7d672d7
0b30ef9
 
 
1af0d58
0b30ef9
 
7d672d7
0b30ef9
7d672d7
 
0b30ef9
 
 
 
 
 
acc0602
0b30ef9
 
 
 
 
 
 
 
 
 
 
deaa98f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: '[*]CC[*]'
  sentences:
  - '[*]COC[*]'
  - '[*]CC(C)C[*]'
license: creativeml-openrail-m
datasets:
- Open-Orca/OpenOrca
metrics:
- accuracy
---

# kuelumbus/polyBERT

This is polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. polyBERT maps PSMILES strings to 600 dimensional dense fingerprints. The fingerprints numerically represent polymer chemical structures. Please see the license agreement in the LICENSE file.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"]

polyBERT = SentenceTransformer('kuelumbus/polyBERT')
embeddings = polyBERT.encode(psmiles_strings)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('kuelumbus/polyBERT')
polyBERT = AutoModel.from_pretrained('kuelumbus/polyBERT')

# Tokenize sentences
encoded_input = tokenizer(psmiles_strings, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = polyBERT(**encoded_input)

# Perform pooling. In this case, mean pooling.
fingerprints = mean_pooling(model_output, encoded_input['attention_mask'])

print("Fingerprints:")
print(fingerprints)
```



## Evaluation Results

See https://github.com/Ramprasad-Group/polyBERT and paper on arXiv.

## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 600, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

Kuenneth, C., Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat Commun 14, 4099 (2023). https://doi.org/10.1038/s41467-023-39868-6