kuldeepbarad
commited on
Commit
•
142877e
1
Parent(s):
27b0d74
Upload 8 files
Browse filesadd pre-trained checkpoints for full and partial point clouds
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/checkpoints/last.ckpt +3 -0
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py +289 -0
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/checkpoints/last.ckpt +3 -0
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py +289 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/checkpoints/last.ckpt +3 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py +225 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/checkpoints/last.ckpt +3 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py +225 -0
checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/checkpoints/last.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30d5224635de058c47919ceb81ba57e2a4b311b063660e6e9ea914e216dbcbc8
|
3 |
+
size 47899897
|
checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
## -------------------- Most frequently changed params here --------------------
|
4 |
+
|
5 |
+
resume_training_from_last = True
|
6 |
+
|
7 |
+
max_steps = 180000
|
8 |
+
batch_size = 10
|
9 |
+
|
10 |
+
num_gpus = 1
|
11 |
+
num_workers_per_gpu = 7
|
12 |
+
|
13 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
14 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
15 |
+
ddm_ckpt_path = None
|
16 |
+
|
17 |
+
max_scenes = None
|
18 |
+
|
19 |
+
## -------------------- Inputs/Shapes ------------------------
|
20 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
21 |
+
|
22 |
+
pc_num_points = 1024
|
23 |
+
pc_latent_dims = 64
|
24 |
+
pc_latent_channels = 3
|
25 |
+
|
26 |
+
grasp_pose_dims = 6
|
27 |
+
num_output_qualities = 0
|
28 |
+
grasp_latent_dims = 4
|
29 |
+
|
30 |
+
grasp_representation_dims = (
|
31 |
+
grasp_pose_dims + num_output_qualities + 1
|
32 |
+
if num_output_qualities is not None
|
33 |
+
else grasp_pose_dims + 1
|
34 |
+
)
|
35 |
+
|
36 |
+
## ----------------------- Model -----------------------
|
37 |
+
|
38 |
+
dropout = 0.1 # or None
|
39 |
+
|
40 |
+
pc_encoder_config = dict(
|
41 |
+
type="PVCNNEncoder",
|
42 |
+
args=dict(
|
43 |
+
in_features=3,
|
44 |
+
n_points=pc_num_points,
|
45 |
+
scale_channels=0.75,
|
46 |
+
scale_voxel_resolution=0.75,
|
47 |
+
num_blocks=(1, 1, 1, 1),
|
48 |
+
out_channels=pc_latent_channels,
|
49 |
+
use_global_attention=False,
|
50 |
+
),
|
51 |
+
)
|
52 |
+
|
53 |
+
grasp_encoder_config = dict(
|
54 |
+
type="ResNet1D",
|
55 |
+
args=dict(
|
56 |
+
in_features=grasp_representation_dims,
|
57 |
+
block_channels=(32, 64, 128, 256),
|
58 |
+
input_conditioning_dims=pc_latent_dims,
|
59 |
+
resnet_block_groups=4,
|
60 |
+
dropout=dropout,
|
61 |
+
),
|
62 |
+
)
|
63 |
+
|
64 |
+
decoder_config = dict(
|
65 |
+
type="ResNet1D",
|
66 |
+
args=dict(
|
67 |
+
block_channels=(32, 64, 128, 256),
|
68 |
+
# out_dim=grasp_pose_dims,
|
69 |
+
input_conditioning_dims=pc_latent_dims,
|
70 |
+
resnet_block_groups=4,
|
71 |
+
dropout=dropout,
|
72 |
+
),
|
73 |
+
)
|
74 |
+
|
75 |
+
loss_config = dict(
|
76 |
+
reconstruction_loss=dict(
|
77 |
+
type="GraspReconstructionLoss",
|
78 |
+
name="reconstruction_loss",
|
79 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
80 |
+
),
|
81 |
+
latent_loss=dict(
|
82 |
+
type="VAELatentLoss",
|
83 |
+
args=dict(
|
84 |
+
name="grasp_latent",
|
85 |
+
cyclical_annealing=True,
|
86 |
+
num_steps=max_steps,
|
87 |
+
num_cycles=1,
|
88 |
+
ratio=0.5,
|
89 |
+
start=1e-7,
|
90 |
+
stop=0.1,
|
91 |
+
),
|
92 |
+
),
|
93 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
94 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
95 |
+
)
|
96 |
+
|
97 |
+
denoiser_model = dict(
|
98 |
+
type="TimeConditionedResNet1D",
|
99 |
+
args=dict(
|
100 |
+
dim=grasp_latent_dims,
|
101 |
+
channels=1,
|
102 |
+
block_channels=(32, 64, 128, 256),
|
103 |
+
input_conditioning_dims=pc_latent_dims,
|
104 |
+
resnet_block_groups=4,
|
105 |
+
dropout=dropout,
|
106 |
+
is_time_conditioned=True,
|
107 |
+
learned_variance=False,
|
108 |
+
learned_sinusoidal_cond=False,
|
109 |
+
random_fourier_features=True,
|
110 |
+
# learned_sinusoidal_dim=16,
|
111 |
+
),
|
112 |
+
)
|
113 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
114 |
+
# See models/builder.py for more info.
|
115 |
+
model = dict(
|
116 |
+
vae=dict(
|
117 |
+
model=dict(
|
118 |
+
type="GraspCVAE",
|
119 |
+
args=dict(
|
120 |
+
grasp_latent_size=grasp_latent_dims,
|
121 |
+
pc_latent_size=pc_latent_dims,
|
122 |
+
pc_encoder_config=pc_encoder_config,
|
123 |
+
grasp_encoder_config=grasp_encoder_config,
|
124 |
+
decoder_config=decoder_config,
|
125 |
+
loss_config=loss_config,
|
126 |
+
num_output_qualities=num_output_qualities,
|
127 |
+
intermediate_feature_resolution=16,
|
128 |
+
),
|
129 |
+
),
|
130 |
+
ckpt_path=vae_ckpt_path,
|
131 |
+
),
|
132 |
+
ddm=dict(
|
133 |
+
model=dict(
|
134 |
+
type="GraspLatentDDM",
|
135 |
+
args=dict(
|
136 |
+
model=denoiser_model,
|
137 |
+
latent_in_features=grasp_latent_dims,
|
138 |
+
diffusion_timesteps=1000,
|
139 |
+
noise_scheduler_type="ddpm",
|
140 |
+
diffusion_loss="l2",
|
141 |
+
beta_schedule="linear",
|
142 |
+
is_conditioned=True,
|
143 |
+
joint_training=False,
|
144 |
+
denoising_loss_weight=1,
|
145 |
+
variance_type="fixed_large",
|
146 |
+
elucidated_diffusion=False,
|
147 |
+
beta_start=0.00005,
|
148 |
+
beta_end=0.001,
|
149 |
+
),
|
150 |
+
),
|
151 |
+
ckpt_path=ddm_ckpt_path,
|
152 |
+
use_vae_ema_model=True,
|
153 |
+
),
|
154 |
+
)
|
155 |
+
## -- Data --
|
156 |
+
augs_config = [
|
157 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
158 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
159 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
160 |
+
]
|
161 |
+
|
162 |
+
root_data_dir = "/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym"
|
163 |
+
object_categories = [
|
164 |
+
"Cup",
|
165 |
+
"Mug",
|
166 |
+
"Fork",
|
167 |
+
"Hat",
|
168 |
+
"Bottle",
|
169 |
+
"Bowl",
|
170 |
+
"Car",
|
171 |
+
"Donut",
|
172 |
+
"Laptop",
|
173 |
+
"MousePad",
|
174 |
+
"Pencil",
|
175 |
+
"Plate",
|
176 |
+
"ScrewDriver",
|
177 |
+
"WineBottle",
|
178 |
+
"Backpack",
|
179 |
+
"Bag",
|
180 |
+
"Banana",
|
181 |
+
"Battery",
|
182 |
+
"BeanBag",
|
183 |
+
"Bear",
|
184 |
+
"Book",
|
185 |
+
"Books",
|
186 |
+
"Camera",
|
187 |
+
"CerealBox",
|
188 |
+
"Cookie",
|
189 |
+
"Hammer",
|
190 |
+
"Hanger",
|
191 |
+
"Knife",
|
192 |
+
"MilkCarton",
|
193 |
+
"Painting",
|
194 |
+
"PillBottle",
|
195 |
+
"Plant",
|
196 |
+
"PowerSocket",
|
197 |
+
"PowerStrip",
|
198 |
+
"PS3",
|
199 |
+
"PSP",
|
200 |
+
"Ring",
|
201 |
+
"Scissors",
|
202 |
+
"Shampoo",
|
203 |
+
"Shoes",
|
204 |
+
"Sheep",
|
205 |
+
"Shower",
|
206 |
+
"Sink",
|
207 |
+
"SoapBottle",
|
208 |
+
"SodaCan",
|
209 |
+
"Spoon",
|
210 |
+
"Statue",
|
211 |
+
"Teacup",
|
212 |
+
"Teapot",
|
213 |
+
"ToiletPaper",
|
214 |
+
"ToyFigure",
|
215 |
+
"Wallet",
|
216 |
+
"WineGlass",
|
217 |
+
"Cow",
|
218 |
+
"Sheep",
|
219 |
+
"Cat",
|
220 |
+
"Dog",
|
221 |
+
"Pizza",
|
222 |
+
"Elephant",
|
223 |
+
"Donkey",
|
224 |
+
"RubiksCube",
|
225 |
+
"Tank",
|
226 |
+
"Truck",
|
227 |
+
"USBStick",
|
228 |
+
]
|
229 |
+
|
230 |
+
train_data = dict(
|
231 |
+
type="AcronymShapenetPointclouds",
|
232 |
+
args=dict(
|
233 |
+
data_root_dir=root_data_dir,
|
234 |
+
batch_num_points_per_pc=pc_num_points,
|
235 |
+
batch_num_grasps_per_pc=100,
|
236 |
+
rotation_repr="mrp",
|
237 |
+
augs_config=augs_config,
|
238 |
+
split="train",
|
239 |
+
batch_failed_grasps_ratio=0,
|
240 |
+
use_dataset_statistics_for_norm=False,
|
241 |
+
filter_categories=object_categories,
|
242 |
+
load_fixed_subset_grasps_per_obj=None,
|
243 |
+
num_repeat_dataset=10,
|
244 |
+
),
|
245 |
+
)
|
246 |
+
|
247 |
+
data = dict(
|
248 |
+
train=train_data,
|
249 |
+
)
|
250 |
+
|
251 |
+
# Patch: Mesh Categories. Used for simulation
|
252 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
253 |
+
mesh_root = (
|
254 |
+
mesh_root
|
255 |
+
if os.path.exists(mesh_root)
|
256 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
257 |
+
)
|
258 |
+
mesh_categories = object_categories
|
259 |
+
|
260 |
+
## -------------------- Trainer --------------------
|
261 |
+
## Logger
|
262 |
+
logger = dict(type="WandbLogger", project="full-pc-ema-63c")
|
263 |
+
|
264 |
+
optimizer = dict(
|
265 |
+
initial_lr=0.001,
|
266 |
+
scheduler=dict(
|
267 |
+
type="MultiStepLR",
|
268 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
trainer = dict(
|
273 |
+
max_steps=max_steps,
|
274 |
+
batch_size=batch_size,
|
275 |
+
num_workers=num_workers_per_gpu * num_gpus,
|
276 |
+
accelerator="gpu",
|
277 |
+
devices=num_gpus,
|
278 |
+
strategy="ddp",
|
279 |
+
logger=logger,
|
280 |
+
log_every_n_steps=100,
|
281 |
+
optimizer=optimizer,
|
282 |
+
resume_training_from_last=resume_training_from_last,
|
283 |
+
check_val_every_n_epoch=1,
|
284 |
+
ema=dict(
|
285 |
+
beta=0.990,
|
286 |
+
update_after_step=1000,
|
287 |
+
),
|
288 |
+
deterministic=True,
|
289 |
+
)
|
checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/checkpoints/last.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7c6759f52c2fe0895bd54fee24425f720fa4d67fd8454e25cb6e338a03b05d7
|
3 |
+
size 40291309
|
checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
## -------------------- Most frequently changed params here --------------------
|
4 |
+
|
5 |
+
resume_training_from_last = True
|
6 |
+
|
7 |
+
max_steps = 180000
|
8 |
+
batch_size = 10
|
9 |
+
|
10 |
+
num_gpus = 1
|
11 |
+
num_workers_per_gpu = 7
|
12 |
+
|
13 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
14 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
15 |
+
ddm_ckpt_path = None
|
16 |
+
|
17 |
+
max_scenes = None
|
18 |
+
|
19 |
+
## -------------------- Inputs/Shapes ------------------------
|
20 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
21 |
+
|
22 |
+
pc_num_points = 1024
|
23 |
+
pc_latent_dims = 64
|
24 |
+
pc_latent_channels = 3
|
25 |
+
|
26 |
+
grasp_pose_dims = 6
|
27 |
+
num_output_qualities = 0
|
28 |
+
grasp_latent_dims = 4
|
29 |
+
|
30 |
+
grasp_representation_dims = (
|
31 |
+
grasp_pose_dims + num_output_qualities + 1
|
32 |
+
if num_output_qualities is not None
|
33 |
+
else grasp_pose_dims + 1
|
34 |
+
)
|
35 |
+
|
36 |
+
## ----------------------- Model -----------------------
|
37 |
+
|
38 |
+
dropout = 0.1 # or None
|
39 |
+
|
40 |
+
pc_encoder_config = dict(
|
41 |
+
type="PVCNNEncoder",
|
42 |
+
args=dict(
|
43 |
+
in_features=3,
|
44 |
+
n_points=pc_num_points,
|
45 |
+
scale_channels=0.75,
|
46 |
+
scale_voxel_resolution=0.75,
|
47 |
+
num_blocks=(1, 1, 1, 1),
|
48 |
+
out_channels=pc_latent_channels,
|
49 |
+
use_global_attention=False,
|
50 |
+
),
|
51 |
+
)
|
52 |
+
|
53 |
+
grasp_encoder_config = dict(
|
54 |
+
type="ResNet1D",
|
55 |
+
args=dict(
|
56 |
+
in_features=grasp_representation_dims,
|
57 |
+
block_channels=(32, 64, 128, 256),
|
58 |
+
input_conditioning_dims=pc_latent_dims,
|
59 |
+
resnet_block_groups=4,
|
60 |
+
dropout=dropout,
|
61 |
+
),
|
62 |
+
)
|
63 |
+
|
64 |
+
decoder_config = dict(
|
65 |
+
type="ResNet1D",
|
66 |
+
args=dict(
|
67 |
+
block_channels=(32, 64, 128, 256),
|
68 |
+
# out_dim=grasp_pose_dims,
|
69 |
+
input_conditioning_dims=pc_latent_dims,
|
70 |
+
resnet_block_groups=4,
|
71 |
+
dropout=dropout,
|
72 |
+
),
|
73 |
+
)
|
74 |
+
|
75 |
+
loss_config = dict(
|
76 |
+
reconstruction_loss=dict(
|
77 |
+
type="GraspReconstructionLoss",
|
78 |
+
name="reconstruction_loss",
|
79 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
80 |
+
),
|
81 |
+
latent_loss=dict(
|
82 |
+
type="VAELatentLoss",
|
83 |
+
args=dict(
|
84 |
+
name="grasp_latent",
|
85 |
+
cyclical_annealing=True,
|
86 |
+
num_steps=max_steps,
|
87 |
+
num_cycles=1,
|
88 |
+
ratio=0.5,
|
89 |
+
start=1e-7,
|
90 |
+
stop=0.1,
|
91 |
+
),
|
92 |
+
),
|
93 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
94 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
95 |
+
)
|
96 |
+
|
97 |
+
denoiser_model = dict(
|
98 |
+
type="TimeConditionedResNet1D",
|
99 |
+
args=dict(
|
100 |
+
dim=grasp_latent_dims,
|
101 |
+
channels=1,
|
102 |
+
block_channels=(32, 64, 128, 256),
|
103 |
+
input_conditioning_dims=pc_latent_dims,
|
104 |
+
resnet_block_groups=4,
|
105 |
+
dropout=dropout,
|
106 |
+
is_time_conditioned=True,
|
107 |
+
learned_variance=False,
|
108 |
+
learned_sinusoidal_cond=False,
|
109 |
+
random_fourier_features=True,
|
110 |
+
# learned_sinusoidal_dim=16,
|
111 |
+
),
|
112 |
+
)
|
113 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
114 |
+
# See models/builder.py for more info.
|
115 |
+
model = dict(
|
116 |
+
vae=dict(
|
117 |
+
model=dict(
|
118 |
+
type="GraspCVAE",
|
119 |
+
args=dict(
|
120 |
+
grasp_latent_size=grasp_latent_dims,
|
121 |
+
pc_latent_size=pc_latent_dims,
|
122 |
+
pc_encoder_config=pc_encoder_config,
|
123 |
+
grasp_encoder_config=grasp_encoder_config,
|
124 |
+
decoder_config=decoder_config,
|
125 |
+
loss_config=loss_config,
|
126 |
+
num_output_qualities=num_output_qualities,
|
127 |
+
intermediate_feature_resolution=16,
|
128 |
+
),
|
129 |
+
),
|
130 |
+
ckpt_path=vae_ckpt_path,
|
131 |
+
),
|
132 |
+
ddm=dict(
|
133 |
+
model=dict(
|
134 |
+
type="GraspLatentDDM",
|
135 |
+
args=dict(
|
136 |
+
model=denoiser_model,
|
137 |
+
latent_in_features=grasp_latent_dims,
|
138 |
+
diffusion_timesteps=1000,
|
139 |
+
noise_scheduler_type="ddpm",
|
140 |
+
diffusion_loss="l2",
|
141 |
+
beta_schedule="linear",
|
142 |
+
is_conditioned=True,
|
143 |
+
joint_training=False,
|
144 |
+
denoising_loss_weight=1,
|
145 |
+
variance_type="fixed_large",
|
146 |
+
elucidated_diffusion=False,
|
147 |
+
beta_start=0.00005,
|
148 |
+
beta_end=0.001,
|
149 |
+
),
|
150 |
+
),
|
151 |
+
ckpt_path=ddm_ckpt_path,
|
152 |
+
use_vae_ema_model=True,
|
153 |
+
),
|
154 |
+
)
|
155 |
+
## -- Data --
|
156 |
+
augs_config = [
|
157 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
158 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
159 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
160 |
+
]
|
161 |
+
|
162 |
+
root_data_dir = "/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym"
|
163 |
+
object_categories = [
|
164 |
+
"Cup",
|
165 |
+
"Mug",
|
166 |
+
"Fork",
|
167 |
+
"Hat",
|
168 |
+
"Bottle",
|
169 |
+
"Bowl",
|
170 |
+
"Car",
|
171 |
+
"Donut",
|
172 |
+
"Laptop",
|
173 |
+
"MousePad",
|
174 |
+
"Pencil",
|
175 |
+
"Plate",
|
176 |
+
"ScrewDriver",
|
177 |
+
"WineBottle",
|
178 |
+
"Backpack",
|
179 |
+
"Bag",
|
180 |
+
"Banana",
|
181 |
+
"Battery",
|
182 |
+
"BeanBag",
|
183 |
+
"Bear",
|
184 |
+
"Book",
|
185 |
+
"Books",
|
186 |
+
"Camera",
|
187 |
+
"CerealBox",
|
188 |
+
"Cookie",
|
189 |
+
"Hammer",
|
190 |
+
"Hanger",
|
191 |
+
"Knife",
|
192 |
+
"MilkCarton",
|
193 |
+
"Painting",
|
194 |
+
"PillBottle",
|
195 |
+
"Plant",
|
196 |
+
"PowerSocket",
|
197 |
+
"PowerStrip",
|
198 |
+
"PS3",
|
199 |
+
"PSP",
|
200 |
+
"Ring",
|
201 |
+
"Scissors",
|
202 |
+
"Shampoo",
|
203 |
+
"Shoes",
|
204 |
+
"Sheep",
|
205 |
+
"Shower",
|
206 |
+
"Sink",
|
207 |
+
"SoapBottle",
|
208 |
+
"SodaCan",
|
209 |
+
"Spoon",
|
210 |
+
"Statue",
|
211 |
+
"Teacup",
|
212 |
+
"Teapot",
|
213 |
+
"ToiletPaper",
|
214 |
+
"ToyFigure",
|
215 |
+
"Wallet",
|
216 |
+
"WineGlass",
|
217 |
+
"Cow",
|
218 |
+
"Sheep",
|
219 |
+
"Cat",
|
220 |
+
"Dog",
|
221 |
+
"Pizza",
|
222 |
+
"Elephant",
|
223 |
+
"Donkey",
|
224 |
+
"RubiksCube",
|
225 |
+
"Tank",
|
226 |
+
"Truck",
|
227 |
+
"USBStick",
|
228 |
+
]
|
229 |
+
|
230 |
+
train_data = dict(
|
231 |
+
type="AcronymShapenetPointclouds",
|
232 |
+
args=dict(
|
233 |
+
data_root_dir=root_data_dir,
|
234 |
+
batch_num_points_per_pc=pc_num_points,
|
235 |
+
batch_num_grasps_per_pc=100,
|
236 |
+
rotation_repr="mrp",
|
237 |
+
augs_config=augs_config,
|
238 |
+
split="train",
|
239 |
+
batch_failed_grasps_ratio=0,
|
240 |
+
use_dataset_statistics_for_norm=False,
|
241 |
+
filter_categories=object_categories,
|
242 |
+
load_fixed_subset_grasps_per_obj=None,
|
243 |
+
num_repeat_dataset=10,
|
244 |
+
),
|
245 |
+
)
|
246 |
+
|
247 |
+
data = dict(
|
248 |
+
train=train_data,
|
249 |
+
)
|
250 |
+
|
251 |
+
# Patch: Mesh Categories. Used for simulation
|
252 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
253 |
+
mesh_root = (
|
254 |
+
mesh_root
|
255 |
+
if os.path.exists(mesh_root)
|
256 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
257 |
+
)
|
258 |
+
mesh_categories = object_categories
|
259 |
+
|
260 |
+
## -------------------- Trainer --------------------
|
261 |
+
## Logger
|
262 |
+
logger = dict(type="WandbLogger", project="full-pc-ema-63c")
|
263 |
+
|
264 |
+
optimizer = dict(
|
265 |
+
initial_lr=0.001,
|
266 |
+
scheduler=dict(
|
267 |
+
type="MultiStepLR",
|
268 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
trainer = dict(
|
273 |
+
max_steps=max_steps,
|
274 |
+
batch_size=batch_size,
|
275 |
+
num_workers=num_workers_per_gpu * num_gpus,
|
276 |
+
accelerator="gpu",
|
277 |
+
devices=num_gpus,
|
278 |
+
strategy="ddp",
|
279 |
+
logger=logger,
|
280 |
+
log_every_n_steps=100,
|
281 |
+
optimizer=optimizer,
|
282 |
+
resume_training_from_last=resume_training_from_last,
|
283 |
+
check_val_every_n_epoch=1,
|
284 |
+
ema=dict(
|
285 |
+
beta=0.990,
|
286 |
+
update_after_step=1000,
|
287 |
+
),
|
288 |
+
deterministic=True,
|
289 |
+
)
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/checkpoints/last.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cb9d2683e0d750df0c163b4ad4d5d9288ec9d7bb2b4246d11f90250dd856f28
|
3 |
+
size 25175359
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
4 |
+
grasp_pose_dims = 6
|
5 |
+
num_output_qualities = 0
|
6 |
+
|
7 |
+
grasp_representation_dims = (
|
8 |
+
grasp_pose_dims + num_output_qualities + 1
|
9 |
+
if num_output_qualities is not None
|
10 |
+
else grasp_pose_dims + 1
|
11 |
+
)
|
12 |
+
|
13 |
+
grasp_latent_dims = 16
|
14 |
+
pc_latent_dims = 256
|
15 |
+
pc_latent_channels = 3
|
16 |
+
|
17 |
+
pc_num_points = 1024
|
18 |
+
batch_num_scenes = 10
|
19 |
+
# max_scenes = 10
|
20 |
+
|
21 |
+
# Max batch steps or epochs. Only one of them should be defined. If both, steps will considered.
|
22 |
+
max_steps = 180000
|
23 |
+
max_epochs = None
|
24 |
+
|
25 |
+
## Checkpoints:
|
26 |
+
# If to auto check the exp directory and resume from last saved checkpoints
|
27 |
+
resume_training_from_last = True
|
28 |
+
|
29 |
+
# TODO: Not passed in config.
|
30 |
+
save_ckpt_every_n_epochs = 50
|
31 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
32 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
33 |
+
ddm_ckpt_path = None
|
34 |
+
|
35 |
+
|
36 |
+
## -- Model --
|
37 |
+
dropout = 0.1 # or None
|
38 |
+
|
39 |
+
pc_encoder_config = dict(
|
40 |
+
type="PVCNNEncoder",
|
41 |
+
args=dict(
|
42 |
+
in_features=3,
|
43 |
+
n_points=pc_num_points,
|
44 |
+
scale_channels=0.75,
|
45 |
+
scale_voxel_resolution=0.75,
|
46 |
+
num_blocks=(1, 1, 1, 1),
|
47 |
+
out_channels=pc_latent_channels,
|
48 |
+
use_global_attention=False,
|
49 |
+
),
|
50 |
+
)
|
51 |
+
|
52 |
+
grasp_encoder_config = dict(
|
53 |
+
type="ResNet1D",
|
54 |
+
args=dict(
|
55 |
+
in_features=grasp_representation_dims,
|
56 |
+
block_channels=(32, 64, 128, 256),
|
57 |
+
input_conditioning_dims=pc_latent_dims,
|
58 |
+
resnet_block_groups=4,
|
59 |
+
dropout=dropout,
|
60 |
+
),
|
61 |
+
)
|
62 |
+
|
63 |
+
decoder_config = dict(
|
64 |
+
type="ResNet1D",
|
65 |
+
args=dict(
|
66 |
+
block_channels=(32, 64, 128, 256),
|
67 |
+
# out_dim=grasp_pose_dims,
|
68 |
+
input_conditioning_dims=pc_latent_dims,
|
69 |
+
resnet_block_groups=4,
|
70 |
+
dropout=dropout,
|
71 |
+
),
|
72 |
+
)
|
73 |
+
|
74 |
+
loss_config = dict(
|
75 |
+
reconstruction_loss=dict(
|
76 |
+
type="GraspReconstructionLoss",
|
77 |
+
name="reconstruction_loss",
|
78 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
79 |
+
),
|
80 |
+
latent_loss=dict(
|
81 |
+
type="VAELatentLoss",
|
82 |
+
args=dict(
|
83 |
+
name="grasp_latent",
|
84 |
+
cyclical_annealing=True,
|
85 |
+
num_steps=max_steps,
|
86 |
+
num_cycles=1,
|
87 |
+
ratio=0.5,
|
88 |
+
start=1e-7,
|
89 |
+
stop=0.1,
|
90 |
+
),
|
91 |
+
),
|
92 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
93 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
94 |
+
)
|
95 |
+
|
96 |
+
denoiser_model = dict(
|
97 |
+
type="TimeConditionedResNet1D",
|
98 |
+
args=dict(
|
99 |
+
dim=grasp_latent_dims,
|
100 |
+
channels=1,
|
101 |
+
block_channels=(32, 64, 128, 256),
|
102 |
+
input_conditioning_dims=pc_latent_dims,
|
103 |
+
resnet_block_groups=4,
|
104 |
+
dropout=dropout,
|
105 |
+
is_time_conditioned=True,
|
106 |
+
learned_variance=False,
|
107 |
+
learned_sinusoidal_cond=False,
|
108 |
+
random_fourier_features=True,
|
109 |
+
# learned_sinusoidal_dim=16,
|
110 |
+
),
|
111 |
+
)
|
112 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
113 |
+
# See models/builder.py for more info.
|
114 |
+
models = dict(
|
115 |
+
vae=dict(
|
116 |
+
model=dict(
|
117 |
+
type="GraspCVAE",
|
118 |
+
args=dict(
|
119 |
+
grasp_latent_size=grasp_latent_dims,
|
120 |
+
pc_latent_size=pc_latent_dims,
|
121 |
+
pc_encoder_config=pc_encoder_config,
|
122 |
+
grasp_encoder_config=grasp_encoder_config,
|
123 |
+
decoder_config=decoder_config,
|
124 |
+
loss_config=loss_config,
|
125 |
+
num_output_qualities=num_output_qualities,
|
126 |
+
intermediate_feature_resolution=16,
|
127 |
+
),
|
128 |
+
),
|
129 |
+
ckpt_path=vae_ckpt_path,
|
130 |
+
),
|
131 |
+
ddm=dict(
|
132 |
+
model=dict(
|
133 |
+
type="GraspLatentDDM",
|
134 |
+
args=dict(
|
135 |
+
model=denoiser_model,
|
136 |
+
latent_in_features=grasp_latent_dims,
|
137 |
+
diffusion_timesteps=1000,
|
138 |
+
noise_scheduler_type="ddpm",
|
139 |
+
diffusion_loss="l2",
|
140 |
+
beta_schedule="linear",
|
141 |
+
is_conditioned=True,
|
142 |
+
joint_training=False,
|
143 |
+
denoising_loss_weight=1,
|
144 |
+
variance_type="fixed_large",
|
145 |
+
elucidated_diffusion=False,
|
146 |
+
beta_start=0.00005,
|
147 |
+
beta_end=0.001,
|
148 |
+
),
|
149 |
+
),
|
150 |
+
ckpt_path=ddm_ckpt_path,
|
151 |
+
),
|
152 |
+
)
|
153 |
+
## -- Data --
|
154 |
+
augs_config = [
|
155 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
156 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
157 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
158 |
+
]
|
159 |
+
|
160 |
+
root_data_dir = (
|
161 |
+
"/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym/renders/objects_filtered_grasps_63cat_8k/"
|
162 |
+
)
|
163 |
+
camera_json = "data/cameras/camera_d435i_dummy.json"
|
164 |
+
max_scenes = None
|
165 |
+
train_data = dict(
|
166 |
+
type="AcronymPartialPointclouds",
|
167 |
+
args=dict(
|
168 |
+
data_root_dir=root_data_dir,
|
169 |
+
max_scenes=max_scenes,
|
170 |
+
camera_json=camera_json,
|
171 |
+
num_points_per_pc=pc_num_points,
|
172 |
+
num_grasps_per_obj=100,
|
173 |
+
rotation_repr="mrp",
|
174 |
+
augs_config=augs_config,
|
175 |
+
split="train",
|
176 |
+
depth_px_scale=10000,
|
177 |
+
scene_prefix="scene_",
|
178 |
+
min_usable_pc_points=1024,
|
179 |
+
preempt_load_data=True,
|
180 |
+
use_failed_grasps=False,
|
181 |
+
failed_grasp_ratio=0.3,
|
182 |
+
load_fixed_grasp_transforms=None,
|
183 |
+
is_input_dataset_normalized=False,
|
184 |
+
),
|
185 |
+
)
|
186 |
+
|
187 |
+
data = dict(
|
188 |
+
train=train_data,
|
189 |
+
)
|
190 |
+
|
191 |
+
# Patch: Mesh Categories. Used for simulation
|
192 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
193 |
+
mesh_root = (
|
194 |
+
mesh_root
|
195 |
+
if os.path.exists(mesh_root)
|
196 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
197 |
+
)
|
198 |
+
mesh_categories = ["Cup", "Mug", "Fork", "Hat", "Bottle", "Bowl", "Car", "Donut", "Laptop", "MousePad", "Pencil", "Plate", "ScrewDriver", "WineBottle", "Backpack", "Bag", "Banana", "Battery", "BeanBag", "Bear", "Book", "Books", "Camera", "CerealBox", "Cookie", "Hammer", "Hanger", "Knife", "MilkCarton", "Painting", "PillBottle", "Plant", "PowerSocket", "PowerStrip", "PS3", "PSP", "Ring", "Scissors", "Shampoo", "Shoes", "Sheep", "Shower", "Sink", "SoapBottle", "SodaCan", "Spoon", "Statue", "Teacup", "Teapot", "ToiletPaper", "ToyFigure", "Wallet", "WineGlass", "Cow", "Sheep", "Cat", "Dog", "Pizza", "Elephant", "Donkey", "RubiksCube", "Tank", "Truck", "USBStick"]
|
199 |
+
|
200 |
+
## Logger
|
201 |
+
logger = dict(type="WandbLogger", project="partial-pc-baseline")
|
202 |
+
|
203 |
+
optimizer = dict(
|
204 |
+
initial_lr=0.001,
|
205 |
+
scheduler=dict(
|
206 |
+
type="MultiStepLR",
|
207 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
208 |
+
),
|
209 |
+
)
|
210 |
+
|
211 |
+
num_gpus = 1
|
212 |
+
|
213 |
+
|
214 |
+
steps_or_epochs = (
|
215 |
+
dict(max_steps=max_steps) if max_steps is not None else dict(max_epochs=max_epochs)
|
216 |
+
)
|
217 |
+
|
218 |
+
train = dict(
|
219 |
+
**steps_or_epochs,
|
220 |
+
batch_size=batch_num_scenes,
|
221 |
+
num_workers=7 * num_gpus,
|
222 |
+
accelerator="gpu",
|
223 |
+
devices=num_gpus,
|
224 |
+
strategy="ddp",
|
225 |
+
)
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/checkpoints/last.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f0e017b0790fcb742797dbd6c3a31cb9c48ba62020ebffd08408c3f395d44e7
|
3 |
+
size 20985977
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
4 |
+
grasp_pose_dims = 6
|
5 |
+
num_output_qualities = 0
|
6 |
+
|
7 |
+
grasp_representation_dims = (
|
8 |
+
grasp_pose_dims + num_output_qualities + 1
|
9 |
+
if num_output_qualities is not None
|
10 |
+
else grasp_pose_dims + 1
|
11 |
+
)
|
12 |
+
|
13 |
+
grasp_latent_dims = 16
|
14 |
+
pc_latent_dims = 256
|
15 |
+
pc_latent_channels = 3
|
16 |
+
|
17 |
+
pc_num_points = 1024
|
18 |
+
batch_num_scenes = 10
|
19 |
+
# max_scenes = 10
|
20 |
+
|
21 |
+
# Max batch steps or epochs. Only one of them should be defined. If both, steps will considered.
|
22 |
+
max_steps = 180000
|
23 |
+
max_epochs = None
|
24 |
+
|
25 |
+
## Checkpoints:
|
26 |
+
# If to auto check the exp directory and resume from last saved checkpoints
|
27 |
+
resume_training_from_last = True
|
28 |
+
|
29 |
+
# TODO: Not passed in config.
|
30 |
+
save_ckpt_every_n_epochs = 50
|
31 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
32 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
33 |
+
ddm_ckpt_path = None
|
34 |
+
|
35 |
+
|
36 |
+
## -- Model --
|
37 |
+
dropout = 0.1 # or None
|
38 |
+
|
39 |
+
pc_encoder_config = dict(
|
40 |
+
type="PVCNNEncoder",
|
41 |
+
args=dict(
|
42 |
+
in_features=3,
|
43 |
+
n_points=pc_num_points,
|
44 |
+
scale_channels=0.75,
|
45 |
+
scale_voxel_resolution=0.75,
|
46 |
+
num_blocks=(1, 1, 1, 1),
|
47 |
+
out_channels=pc_latent_channels,
|
48 |
+
use_global_attention=False,
|
49 |
+
),
|
50 |
+
)
|
51 |
+
|
52 |
+
grasp_encoder_config = dict(
|
53 |
+
type="ResNet1D",
|
54 |
+
args=dict(
|
55 |
+
in_features=grasp_representation_dims,
|
56 |
+
block_channels=(32, 64, 128, 256),
|
57 |
+
input_conditioning_dims=pc_latent_dims,
|
58 |
+
resnet_block_groups=4,
|
59 |
+
dropout=dropout,
|
60 |
+
),
|
61 |
+
)
|
62 |
+
|
63 |
+
decoder_config = dict(
|
64 |
+
type="ResNet1D",
|
65 |
+
args=dict(
|
66 |
+
block_channels=(32, 64, 128, 256),
|
67 |
+
# out_dim=grasp_pose_dims,
|
68 |
+
input_conditioning_dims=pc_latent_dims,
|
69 |
+
resnet_block_groups=4,
|
70 |
+
dropout=dropout,
|
71 |
+
),
|
72 |
+
)
|
73 |
+
|
74 |
+
loss_config = dict(
|
75 |
+
reconstruction_loss=dict(
|
76 |
+
type="GraspReconstructionLoss",
|
77 |
+
name="reconstruction_loss",
|
78 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
79 |
+
),
|
80 |
+
latent_loss=dict(
|
81 |
+
type="VAELatentLoss",
|
82 |
+
args=dict(
|
83 |
+
name="grasp_latent",
|
84 |
+
cyclical_annealing=True,
|
85 |
+
num_steps=max_steps,
|
86 |
+
num_cycles=1,
|
87 |
+
ratio=0.5,
|
88 |
+
start=1e-7,
|
89 |
+
stop=0.1,
|
90 |
+
),
|
91 |
+
),
|
92 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
93 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
94 |
+
)
|
95 |
+
|
96 |
+
denoiser_model = dict(
|
97 |
+
type="TimeConditionedResNet1D",
|
98 |
+
args=dict(
|
99 |
+
dim=grasp_latent_dims,
|
100 |
+
channels=1,
|
101 |
+
block_channels=(32, 64, 128, 256),
|
102 |
+
input_conditioning_dims=pc_latent_dims,
|
103 |
+
resnet_block_groups=4,
|
104 |
+
dropout=dropout,
|
105 |
+
is_time_conditioned=True,
|
106 |
+
learned_variance=False,
|
107 |
+
learned_sinusoidal_cond=False,
|
108 |
+
random_fourier_features=True,
|
109 |
+
# learned_sinusoidal_dim=16,
|
110 |
+
),
|
111 |
+
)
|
112 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
113 |
+
# See models/builder.py for more info.
|
114 |
+
models = dict(
|
115 |
+
vae=dict(
|
116 |
+
model=dict(
|
117 |
+
type="GraspCVAE",
|
118 |
+
args=dict(
|
119 |
+
grasp_latent_size=grasp_latent_dims,
|
120 |
+
pc_latent_size=pc_latent_dims,
|
121 |
+
pc_encoder_config=pc_encoder_config,
|
122 |
+
grasp_encoder_config=grasp_encoder_config,
|
123 |
+
decoder_config=decoder_config,
|
124 |
+
loss_config=loss_config,
|
125 |
+
num_output_qualities=num_output_qualities,
|
126 |
+
intermediate_feature_resolution=16,
|
127 |
+
),
|
128 |
+
),
|
129 |
+
ckpt_path=vae_ckpt_path,
|
130 |
+
),
|
131 |
+
ddm=dict(
|
132 |
+
model=dict(
|
133 |
+
type="GraspLatentDDM",
|
134 |
+
args=dict(
|
135 |
+
model=denoiser_model,
|
136 |
+
latent_in_features=grasp_latent_dims,
|
137 |
+
diffusion_timesteps=1000,
|
138 |
+
noise_scheduler_type="ddpm",
|
139 |
+
diffusion_loss="l2",
|
140 |
+
beta_schedule="linear",
|
141 |
+
is_conditioned=True,
|
142 |
+
joint_training=False,
|
143 |
+
denoising_loss_weight=1,
|
144 |
+
variance_type="fixed_large",
|
145 |
+
elucidated_diffusion=False,
|
146 |
+
beta_start=0.00005,
|
147 |
+
beta_end=0.001,
|
148 |
+
),
|
149 |
+
),
|
150 |
+
ckpt_path=ddm_ckpt_path,
|
151 |
+
),
|
152 |
+
)
|
153 |
+
## -- Data --
|
154 |
+
augs_config = [
|
155 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
156 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
157 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
158 |
+
]
|
159 |
+
|
160 |
+
root_data_dir = (
|
161 |
+
"/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym/renders/objects_filtered_grasps_63cat_8k/"
|
162 |
+
)
|
163 |
+
camera_json = "data/cameras/camera_d435i_dummy.json"
|
164 |
+
max_scenes = None
|
165 |
+
train_data = dict(
|
166 |
+
type="AcronymPartialPointclouds",
|
167 |
+
args=dict(
|
168 |
+
data_root_dir=root_data_dir,
|
169 |
+
max_scenes=max_scenes,
|
170 |
+
camera_json=camera_json,
|
171 |
+
num_points_per_pc=pc_num_points,
|
172 |
+
num_grasps_per_obj=100,
|
173 |
+
rotation_repr="mrp",
|
174 |
+
augs_config=augs_config,
|
175 |
+
split="train",
|
176 |
+
depth_px_scale=10000,
|
177 |
+
scene_prefix="scene_",
|
178 |
+
min_usable_pc_points=1024,
|
179 |
+
preempt_load_data=True,
|
180 |
+
use_failed_grasps=False,
|
181 |
+
failed_grasp_ratio=0.3,
|
182 |
+
load_fixed_grasp_transforms=None,
|
183 |
+
is_input_dataset_normalized=False,
|
184 |
+
),
|
185 |
+
)
|
186 |
+
|
187 |
+
data = dict(
|
188 |
+
train=train_data,
|
189 |
+
)
|
190 |
+
|
191 |
+
# Patch: Mesh Categories. Used for simulation
|
192 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
193 |
+
mesh_root = (
|
194 |
+
mesh_root
|
195 |
+
if os.path.exists(mesh_root)
|
196 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
197 |
+
)
|
198 |
+
mesh_categories = ["Cup", "Mug", "Fork", "Hat", "Bottle", "Bowl", "Car", "Donut", "Laptop", "MousePad", "Pencil", "Plate", "ScrewDriver", "WineBottle", "Backpack", "Bag", "Banana", "Battery", "BeanBag", "Bear", "Book", "Books", "Camera", "CerealBox", "Cookie", "Hammer", "Hanger", "Knife", "MilkCarton", "Painting", "PillBottle", "Plant", "PowerSocket", "PowerStrip", "PS3", "PSP", "Ring", "Scissors", "Shampoo", "Shoes", "Sheep", "Shower", "Sink", "SoapBottle", "SodaCan", "Spoon", "Statue", "Teacup", "Teapot", "ToiletPaper", "ToyFigure", "Wallet", "WineGlass", "Cow", "Sheep", "Cat", "Dog", "Pizza", "Elephant", "Donkey", "RubiksCube", "Tank", "Truck", "USBStick"]
|
199 |
+
|
200 |
+
## Logger
|
201 |
+
logger = dict(type="WandbLogger", project="partial-pc-baseline")
|
202 |
+
|
203 |
+
optimizer = dict(
|
204 |
+
initial_lr=0.001,
|
205 |
+
scheduler=dict(
|
206 |
+
type="MultiStepLR",
|
207 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
208 |
+
),
|
209 |
+
)
|
210 |
+
|
211 |
+
num_gpus = 1
|
212 |
+
|
213 |
+
|
214 |
+
steps_or_epochs = (
|
215 |
+
dict(max_steps=max_steps) if max_steps is not None else dict(max_epochs=max_epochs)
|
216 |
+
)
|
217 |
+
|
218 |
+
train = dict(
|
219 |
+
**steps_or_epochs,
|
220 |
+
batch_size=batch_num_scenes,
|
221 |
+
num_workers=7 * num_gpus,
|
222 |
+
accelerator="gpu",
|
223 |
+
devices=num_gpus,
|
224 |
+
strategy="ddp",
|
225 |
+
)
|