Uploaded model
- Developed by: kumapo
- License: apache-2.0
- Finetuned from model : kumapo/llm-jp-3-13b-jaster-dev-3k
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Usage
# 必要なパッケージをインストール
pip install pip3-autoremove
pip-autoremove torch torchvision torchaudio -y
pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121
pip install unsloth
# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
import json
from tqdm import tqdm
from datasets import load_dataset
from google.colab import userdata
model_id = "kumapo/llm-jp-3-13b-jaster-dev-3k-ichikara-003-3k-synthe-elyza-3k-4096"
data_file = "./elyza-tasks-100-TV_0.jsonl"
# Google Colabの場合
HF_TOKEN = userdata.get('HF_ACCESS_TOKEN')
# unslothのFastLanguageModelで元のモデルをロード。
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
token=HF_TOKEN
)
from datasets import load_dataset
# タスクとなるデータの読み込み。
# 事前にデータをアップロードしてください。
datasets = load_dataset("json", data_files=data_file, split="train")
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
PROMPT = "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{}\n\n### 応答:\n{}"
MAX_SEQ_LEN = 4096
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = PROMPT.format(input, "") # プロンプトの作成
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
max_new_tokens = MAX_SEQ_LEN - inputs["input_ids"].shape[-1]
outputs = model.generate(**inputs, max_new_tokens = max_new_tokens, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(
outputs[0][inputs["input_ids"].shape[-1] :],
skip_special_tokens=True,
)
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# 結果をjsonlで保存。
result_file = f"{model_id.replace('/', '-')}-outputs.jsonl"
with open(result_file, 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
- Downloads last month
- 46
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for kumapo/llm-jp-3-13b-jaster-dev-3k-ichikara-003-3k-synthe-elyza-3k-4096
Base model
kumapo/llm-jp-3-13b-jaster-dev-3k