kuotient's picture
Create README.md
e644254 verified
|
raw
history blame
3.25 kB
---
license: cc-by-nc-sa-4.0
datasets:
- squarelike/sharegpt_deepl_ko_translation
language:
- ko
pipeline_tag: translation
tags:
- translate
---
# **Seagull-13b-translation-AWQ πŸ“‡**
![Seagull-typewriter](./Seagull-typewriter-pixelated.png)
## This is quantized version of original model: Seagull-13b-translation.
**Seagull-13b-translation** is yet another translator model, but carefully considered the following issues from existing translation models.
- `newline` or `space` not matching the original text
- Using translated dataset with first letter removed for training
- Codes
- Markdown format
- LaTeX format
- etc
이런 μ΄μŠˆλ“€μ„ μΆ©λΆ„νžˆ μ²΄ν¬ν•˜κ³  ν•™μŠ΅μ„ μ§„ν–‰ν•˜μ˜€μ§€λ§Œ, λͺ¨λΈμ„ μ‚¬μš©ν•  λ•ŒλŠ” 이런 뢀뢄에 λŒ€ν•œ κ²°κ³Όλ₯Ό λ©΄λ°€ν•˜κ²Œ μ‚΄νŽ΄λ³΄λŠ” 것을 μΆ”μ²œν•©λ‹ˆλ‹€(μ½”λ“œκ°€ ν¬ν•¨λœ ν…μŠ€νŠΈ λ“±).
> If you're interested in building large-scale language models to solve a wide variety of problems in a wide variety of domains, you should consider joining [Allganize](https://allganize.career.greetinghr.com/o/65146).
For a coffee chat or if you have any questions, please do not hesitate to contact me as well! - kuotient.dev@gmail.com
This model was created as a personal experiment, unrelated to the organization I work for.
# **License**
## From original model author:
- Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, under LLAMA 2 COMMUNITY LICENSE AGREEMENT
- Full License available at: https://huggingface.co/beomi/llama-2-koen-13b/blob/main/LICENSE
# **Model Details**
#### **Developed by**
Jisoo Kim(kuotient)
#### **Base Model**
[beomi/llama-2-koen-13b](https://huggingface.co/beomi/llama-2-koen-13b)
#### **Datasets**
- [sharegpt_deepl_ko_translation](https://huggingface.co/datasets/squarelike/sharegpt_deepl_ko_translation)
- AIHUB
- κΈ°μˆ κ³Όν•™ λΆ„μ•Ό ν•œ-영 λ²ˆμ—­ 병렬 λ§λ­‰μΉ˜ 데이터
- μΌμƒμƒν™œ 및 ꡬ어체 ν•œ-영 λ²ˆμ—­ 병렬 λ§λ­‰μΉ˜ 데이터
## Usage
#### Format
It follows only **ChatML** format.
```python
<|im_start|>system
주어진 λ¬Έμž₯을 ν•œκ΅­μ–΄λ‘œ λ²ˆμ—­ν•˜μ„Έμš”.<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant
# Don't miss newline here
```
```python
<|im_start|>system
주어진 λ¬Έμž₯을 μ˜μ–΄λ‘œ λ²ˆμ—­ν•˜μ„Έμš”.<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant
# Don't miss newline here
```
#### Example
**I highly recommend to use vllm. I will write a guide for quick and easy inference if requested.**
Since, chat_template already contains insturction format above.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("kuotient/Seagull-13B-translation")
tokenizer = AutoTokenizer.from_pretrained("kuotient/Seagull-13B-translation")
messages = [
{"role": "user", "content": "λ°”λ‚˜λ‚˜λŠ” μ›λž˜ ν•˜μ–€μƒ‰μ΄μ•Ό?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```