|
--- |
|
license: cc-by-nc-sa-4.0 |
|
datasets: |
|
- squarelike/sharegpt_deepl_ko_translation |
|
language: |
|
- ko |
|
pipeline_tag: translation |
|
tags: |
|
- translate |
|
--- |
|
## **Seagull-13b-translation ๐** |
|
![Seagull-typewriter](./Seagull-typewriter.png) |
|
**Seagull-13b-translation** is yet another translator model, but carefully considered the following issues from existing translation models. |
|
- Exact match of `newline` or `space` |
|
- Not using dataset with first letter removed |
|
- Code |
|
- Markdown format |
|
- LaTeX format |
|
- etc |
|
|
|
์ด๋ฐ ์ด์๋ค์ ์ถฉ๋ถํ ์ฒดํฌํ๊ณ ํ์ต์ ์งํํ์์ง๋ง, ๋ชจ๋ธ์ ์ฌ์ฉํ ๋๋ ์ด๋ฐ ๋ถ๋ถ์ ๋ํ ๊ฒฐ๊ณผ๋ฅผ ๋ฉด๋ฐํ๊ฒ ์ดํด๋ณด๋ ๊ฒ์ ์ถ์ฒํฉ๋๋ค(์ฝ๋๊ฐ ํฌํจ๋ ํ
์คํธ ๋ฑ). |
|
|
|
> If you're interested in building large-scale language models to solve a wide variety of problems in a wide variety of domains, you should consider joining [Allganize](https://allganize.career.greetinghr.com/o/65146). |
|
For a coffee chat or if you have any questions, please do not hesitate to contact me as well! - kuotient.dev@gmail.com |
|
|
|
This model was created as a personal experiment, unrelated to the organization I work for. |
|
|
|
## **License** |
|
## From original model author: |
|
- Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, under LLAMA 2 COMMUNITY LICENSE AGREEMENT |
|
- Full License available at: https://huggingface.co/beomi/llama-2-koen-13b/blob/main/LICENSE |
|
|
|
# **Model Details** |
|
#### **Developed by** |
|
Jisoo Kim(kuotient) |
|
#### **Base Model** |
|
[beomi/llama-2-koen-13b](https://huggingface.co/beomi/llama-2-koen-13b) |
|
#### **Datasets** |
|
- [sharegpt_deepl_ko_translation](https://huggingface.co/datasets/squarelike/sharegpt_deepl_ko_translation) |
|
- [KOR-OpenOrca-Platypus-v3](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3) |
|
- AIHUB |
|
- ๊ธฐ์ ๊ณผํ ๋ถ์ผ ํ-์ ๋ฒ์ญ ๋ณ๋ ฌ ๋ง๋ญ์น ๋ฐ์ดํฐ |
|
- ์ผ์์ํ ๋ฐ ๊ตฌ์ด์ฒด ํ-์ ๋ฒ์ญ ๋ณ๋ ฌ ๋ง๋ญ์น ๋ฐ์ดํฐ |
|
|
|
## **Usage** |
|
#### **Format** |
|
It follows only **ChatML** format. |
|
|
|
```python |
|
<|im_start|>system |
|
์ฃผ์ด์ง ๋ฌธ์ฅ์ ํ๊ตญ์ด๋ก ๋ฒ์ญํ์ธ์.<|im_end|> |
|
<|im_start|>user |
|
{instruction}<|im_end|> |
|
<|im_start|>assistant |
|
# Don't miss newline here |
|
``` |
|
```python |
|
<|im_start|>system |
|
์ฃผ์ด์ง ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํ์ธ์.<|im_end|> |
|
<|im_start|>user |
|
{instruction}<|im_end|> |
|
<|im_start|>assistant |
|
# Don't miss newline here |
|
``` |
|
|
|
#### Output example |
|
์๋ฌธ: |
|
> A particle's wave function, $\psi(x)$, is given by $$\psi(x)=\begin{cases} 3x & \text{if } -1 \leq x \leq 0 \\ 3(1-x) & \text{if } 0 < x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$ Compute the Fourier transform, $\tilde{\psi}(k)$, of the wave function $\psi(x)$ and show that it satisfies the Fourier inversion theorem, i.e., $\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{ikx} \mathrm{d}k$. |
|
|
|
Seagull-13b-translation: |
|
> ์
์์ ํ๋ ํจ์ $\psi(x)$๋ ๋ค์๊ณผ ๊ฐ์ด ์ฃผ์ด์ง๋๋ค. $$\psi(x)=\begin{cases} 3x & \text{if } -1 \leq x \leq 0 \\ 3(1-x) & \text{if } 0 < x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$ ํ๋ ํจ์ $\psi(x)$์ ํธ๋ฆฌ์ ๋ณํ $\tilde{\psi}(k)$๋ฅผ ๊ณ์ฐํ๊ณ ํธ๋ฆฌ์ ๋ฐ์ ์ ๋ฆฌ, ์ฆ $\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{ikx} \mathrm{d}k$๋ฅผ ๋ง์กฑํฉ๋๋ค. |
|
|
|
DeepL: |
|
> ์
์์ ํ๋ ํจ์ $\psi(x)$๋ $$\psi(x)=\begin{cases}๋ก ์ฃผ์ด์ง๋๋ค. 3x & \text{if } -1 \leq x \leq 0 \\ 3(1-x) & \text{if } 0 < x \leq 1 \\ 0 & \text{๊ธฐํ} \end{cases}$$ ํ๋ ํจ์ $\psi(x)$์ ํธ๋ฆฌ์ ๋ณํ์ธ $\tilde{\psi}(k)$๋ฅผ ๊ณ์ฐํ๊ณ ํธ๋ฆฌ์ ๋ฐ์ ์ ๋ฆฌ, ์ฆ $\psi(x) = \frac{1}{\sqrt{2\pi}}๋ฅผ ๋ง์กฑํจ์ ์ฆ๋ช
ํฉ๋๋ค. \int_{-\infty}^{\infty} \๋ฌผ๊ฒฐํ{\psi}(k) e^{ikx} \mathrm{d}k$. |
|
|
|
...and much more awesome cases with SQL query, code and markdown! |
|
|
|
#### **How to** |
|
**I highly recommend to inference model with vllm. I will write a guide for quick and easy inference if requested.** |
|
Since, chat_template already contains insturction format above. |
|
You can use the code below. |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
model = AutoModelForCausalLM.from_pretrained("kuotient/Seagull-13B-translation") |
|
tokenizer = AutoTokenizer.from_pretrained("kuotient/Seagull-13B-translation") |
|
messages = [ |
|
{"role": "system", "content", "์ฃผ์ด์ง ๋ฌธ์ฅ์ ํ๊ตญ์ด๋ก ๋ฒ์ญํ์ธ์."} |
|
{"role": "user", "content": "Here are five examples of nutritious foods to serve your kids."}, |
|
] |
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |