doplhin-dpo-1-epoch / README.md
kyryl-opens-ml's picture
Model save
2361139 verified
|
raw
history blame
2.15 kB
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: cognitivecomputations/dolphin-2.1-mistral-7b
model-index:
- name: doplhin-dpo-1-epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# doplhin-dpo-1-epoch
This model is a fine-tuned version of [cognitivecomputations/dolphin-2.1-mistral-7b](https://huggingface.co/cognitivecomputations/dolphin-2.1-mistral-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6046
- Rewards/chosen: -6.6173
- Rewards/rejected: -10.5237
- Rewards/accuracies: 0.7880
- Rewards/margins: 3.9064
- Logps/rejected: -431.3049
- Logps/chosen: -422.0936
- Logits/rejected: -2.5993
- Logits/chosen: -2.6739
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 0.9
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5544 | 0.62 | 700 | 0.6046 | -6.6173 | -10.5237 | 0.7880 | 3.9064 | -431.3049 | -422.0936 | -2.5993 | -2.6739 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu118
- Datasets 2.16.1
- Tokenizers 0.15.2