(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0.

Ko-Platypus2-13B

KO-Platypus2-13B

Model Details

More detail repo(Github): KO-Platypus

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture KO-Platypus2-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.

Base Model hyunseoki/ko-en-llama2-13b

Training Dataset I use KOpen-platypus.
It is high-quality korean translation dataset about open-platypus.

I use A100 GPU 40GB and COLAB, when trianing.

Model Benchmark

KO-LLM leaderboard

img

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
KO-Platypus2-13B(ours) 47.90 44.20 54.31 42.47 44.41 54.11
hyunseoki/ko-en-llama2-13b 46.68 42.15 54.23 38.90 40.74 57.39
MarkrAI/kyujin-CoTy-platypus-ko-12.8b 46.44 34.98 49.11 25.68 37.59 84.86
momo/polyglot-ko-12.8b-Chat-QLoRA-Merge 45.71 35.49 49.93 25.97 39.43 77.70
KoT-platypus2-7B 45.62 38.05 49.63 34.68 37.69 68.08

Compare with Top 4 SOTA models. (update: 10/06)


Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/KO-Platypus2-13B"
CoT-llama = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)

Readme format: kyujinpy/KoT-platypus2-7B


Downloads last month
2,945
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kyujinpy/KO-Platypus2-13B

Spaces using kyujinpy/KO-Platypus2-13B 6

Collection including kyujinpy/KO-Platypus2-13B