Edit model card

(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0.

🐳Korean-OpenOrca-13B🐳

img

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.

Repo Link
Github Korean-OpenOrca: 🐳Korean-OpenOrca🐳

Base Model hyunseoki/ko-en-llama2-13b

Training Dataset
I use OpenOrca-KO.
Using DeepL, translate about OpenOrca.

I use A100 GPU 40GB and COLAB, when trianing.

Model Benchmark

KO-LLM leaderboard

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
Korean-OpenOrca-13B(ours🐳) 47.85 43.09 54.13 40.24 45.22 56.57
KoT-Platypus2-13B 49.55 43.69 53.05 42.29 43.34 65.38
KO-Platypus2-13B 47.90 44.20 54.31 42.47 44.41 54.11
hyunseoki/ko-en-llama2-13b 46.68 42.15 54.23 38.90 40.74 57.39
MarkrAI/kyujin-CoTy-platypus-ko-12.8b 46.44 34.98 49.11 25.68 37.59 84.86

Compare with Top 4 SOTA models. (update: 10/09)

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/Korean-OpenOrca-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Downloads last month
3,878
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kyujinpy/Korean-OpenOrca-13B

Spaces using kyujinpy/Korean-OpenOrca-13B 5