SOLAR-Platypus-10.7B-v1
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
SOLAR-Platypus-10.7B-v1 is an auto-regressive language model based on the Llama2 architecture.
Base Model
upstage/SOLAR-10.7B-v1.0
Training Dataset
kyujinpy/Open-platypus-Commercial.
Notice
While training, I used LoRA.
The lora_r values is 16.
Q-LoRA config
- LoRA_r: 16
- LoRA_alpha: 16
- LoRA_dropout: 0.05
- LoRA_target_modules: [gate_proj, up_proj, down_proj]
Prompt
- Alpaca template.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
SOLAR-Platypus-10.7B-v1 | 58.62 | 61.69 | 84.23 | 60.37 | 51.58 | 82.79 | 11.07 |
SOLAR-Platypus-10.7B-v2 | 55.25 | 59.39 | 83.57 | 59.93 | 43.15 | 81.45 | 4.02 |
upstage/SOLAR-10.7B-v1.0 | 66.04 | 61.95 | 84.60 | 65.48 | 45.04 | 83.66 | 55.50 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/SOLAR-Platypus-10.7B-v1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 58.62 |
AI2 Reasoning Challenge (25-Shot) | 61.69 |
HellaSwag (10-Shot) | 84.23 |
MMLU (5-Shot) | 60.37 |
TruthfulQA (0-shot) | 51.58 |
Winogrande (5-shot) | 82.79 |
GSM8k (5-shot) | 11.07 |
- Downloads last month
- 658
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kyujinpy/SOLAR-Platypus-10.7B-v1
Dataset used to train kyujinpy/SOLAR-Platypus-10.7B-v1
Spaces using kyujinpy/SOLAR-Platypus-10.7B-v1 5
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard61.690
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.230
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard60.370
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard51.580
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.790
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard11.070