File size: 5,035 Bytes
12cb36a 4f8ca82 12cb36a 4f8ca82 bcc1c2f 12cb36a 4f8ca82 a7ead15 4f8ca82 12cb36a 4f8ca82 52c5639 4f8ca82 12cb36a bcc1c2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
pipeline_tag: sentence-similarity
license: cc-by-4.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- multilingual
- en
- hi
- mr
- kn
- ta
- te
- ml
- gu
- or
- pa
- bn
widget:
- source_sentence: दिवाळी आपण मोठ्या उत्साहाने साजरी करतो
sentences:
- दिवाळी आपण आनंदाने साजरी करतो
- दिवाळी हा दिव्यांचा सण आहे
example_title: Monolingual- Marathi
- source_sentence: हम दीपावली उत्साह के साथ मनाते हैं
sentences:
- हम दीपावली खुशियों से मनाते हैं
- दिवाली रोशनी का त्योहार है
example_title: Monolingual- Hindi
- source_sentence: અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ
sentences:
- દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ
- દિવાળી એ રોશનીનો તહેવાર છે
example_title: Monolingual- Gujarati
- source_sentence: आम्हाला भारतीय असल्याचा अभिमान आहे
sentences:
- हमें भारतीय होने पर गर्व है
- భారతీయులమైనందుకు గర్విస్తున్నాం
- અમને ભારતીય હોવાનો ગર્વ છે
example_title: Cross-lingual 1
- source_sentence: ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ
sentences:
- മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു
- ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |
- बारिश के बाद बगीचा सुंदर दिखता है
example_title: Cross-lingual 2
---
# IndicSBERT
This is a MuRIL model (google/muril-base-cased) trained on the NLI dataset of ten major Indian Languages. <br>
The single model works for English, Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
The model also has cross-lingual capabilities. <br>
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert <br>
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
```
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
```
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
|