|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
This model can be used to generate an input caption from a SMILES string. |
|
|
|
## Example Usage |
|
```python |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512) |
|
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption') |
|
|
|
input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O' |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids |
|
|
|
outputs = model.generate(input_ids, num_beams=5, max_length=512) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Paper |
|
|
|
For more information, please take a look at our paper. |
|
|
|
Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) |
|
|
|
Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji* |