deberta-v3-base_conll03

This model is a fine-tuned version of microsoft/deberta-v3-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0973
  • F1-type-match: 0.9316
  • F1-partial: 0.9733
  • F1-strict: 0.9235
  • F1-exact: 0.9651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1-type-match F1-partial F1-strict F1-exact
0.0963 1.0 439 0.0814 0.8408 0.8897 0.8323 0.8809
0.0197 2.0 878 0.0803 0.9219 0.9725 0.9138 0.9648
0.0108 3.0 1317 0.0858 0.9307 0.9728 0.9228 0.9648
0.0054 4.0 1756 0.0922 0.9313 0.9725 0.9235 0.9643
0.0033 5.0 2195 0.0973 0.9316 0.9733 0.9235 0.9651

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0
Downloads last month
34
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lambdavi/deberta-v3-base_conll03

Finetuned
(278)
this model

Dataset used to train lambdavi/deberta-v3-base_conll03

Collection including lambdavi/deberta-v3-base_conll03